
Georgiadis et al. Brain Informatics            (2022) 9:22  
https://doi.org/10.1186/s40708-022-00171-7

RESEARCH

RNeuMark: A Riemannian EEG Analysis 
Framework for Neuromarketing
Kostas Georgiadis1,2*, Fotis P. Kalaganis1,2, Vangelis P. Oikonomou1, Spiros Nikolopoulos1, Nikos A. Laskaris2 and 
Ioannis Kompatsiaris1 

Abstract 

Neuromarketing exploits neuroimaging techniques so as to reinforce the predictive power of conventional marketing 
tools, like questionnaires and focus groups. Electroencephalography (EEG) is the most commonly encountered neu-
roimaging technique due to its non-invasiveness, low-cost, and its very recent embedding in wearable devices. The 
transcription of brainwave patterns to consumer attitude is supported by various signal descriptors, while the quest 
for profitable novel ways is still an open research question. Here, we suggest the use of sample covariance matrices as 
alternative descriptors, that encapsulate the coordinated neural activity from distinct brain areas, and the adoption of 
Riemannian geometry for their handling. We first establish the suitability of Riemannian approach for neuromarket-
ing-related problems and then suggest a relevant decoding scheme for predicting consumers’ choices (e.g., willing 
to buy or not a specific product). Since the decision-making process involves the concurrent interaction of various 
cognitive processes and consequently of distinct brain rhythms, the proposed decoder takes the form of an ensemble 
classifier that builds upon a multi-view perspective, with each view dedicated to a specific frequency band. Adopt-
ing a standard machine learning procedure, and using a set of trials (training data) in conjunction with the associated 
behavior labels (“buy”/ “not buy”), we train a battery of classifiers accordingly. Each classifier is designed to operate in 
the space recovered from the inter-trial distances of SCMs and to cast a rhythm-depended decision that is eventually 
combined with the predictions of the rest ones. The demonstration and evaluation of the proposed approach are 
performed in 2 neuromarketing-related datasets of different nature. The first is employed to showcase the potential of 
the suggested descriptor, while the second to showcase the decoder’s superiority against popular alternatives in the 
field.
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1 Introduction
Neuromarketing is an emerging field that interconnects 
neuroscience and consumer behavior studies with eco-
nomics [1, 2]. As a concept, it is originated by the need 
of researchers and practitioners in the field to gain a 
more objective overview about consumers’ decisions 

and preferences and the belief that there are fragments 
of information that are unobtainable by traditional mar-
keting practices, like focus groups, questionnaires, inter-
views, and behavioral metrics [3]. These practices that 
are in principle behavioral and subjective have been suc-
cessfully embodied in the field of marketing research 
since they are characterized by low-cost, scalability, and 
easy/swift interpretations. Nevertheless, the main identi-
fied drawback is the lack of generalizability that in turn 
results in questionable reliability in terms of predic-
tive power [3]. Additionally, there are several occasions 
that the participants’ responses have been identified as 
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inaccurate, unreliable, biased, and in the case of focus 
groups even affected by other participants’ opinions [4].

The transition from conventional marketing to neu-
romarketing is achieved via the incorporation of neuro-
imaging techniques, which are employed to examine the 
brain’s physiological responses to advertisement-related 
stimuli. Out of the various available neuroimaging meth-
ods, electroencephalography (EEG) is the one encoun-
tered in the majority of neuromarketing-based studies, 
as it is non-invasive, portable, can be obtained at a rela-
tively low cost, and provides measurements of high tem-
poral resolution. The lower spatial resolution anticipated 
in EEG when compared to other neuroimaging tech-
nologies is “compensated” by EEG’s previously described 
characteristics. In essence, neuromarketing is a typical 
example of a passive Brain–Computer Interface (BCI) 
[5], as the gathered neurophysiological responses are 
used to monitor the user’s cognitive states (e.g., attention, 
mental workload, memorization) and not as an alterna-
tive communication or control pathway, which is the case 
for active BCIs [6].

EEG-based neuromarketing studies identify and exploit 
different cognitive processes depending on the study’s 
question(s) and objectives. Approach–withdrawal is 
probably the dimension of cognitive processes analyzed 
in the majority of them, as it indicates whether the par-
ticipant is attracted (approach) or not (withdrawal) to a 
particular stimuli (e.g., commercial advertisement, prod-
uct) [7–9]. In essence approach–withdrawal is an index, 
usually referred as AW, that quantifies the hemispheric 
asymmetry in the prefrontal cortex, i.e., it estimates the 
difference in terms of brain activity between the left and 
right prefrontal brain area filtered in alpha frequency 
band (α; 8–13  Hz). A relatively higher left frontal acti-
vation usually translates to a positive AW and indicates 
the approach phenomenon, whereas an increase in the 
right frontal activity usually reflects a negative AW and 
is indicative of the withdrawal phenomenon [10]. Simi-
larly to the AW, there are some studies that formulate 
the choice index by examining the frontal asymmetric 
beta (β; 13-30 Hz) and gamma (γ; 30–45 Hz) oscillations 
[11, 12]. Another cognitive process that affects the deci-
sion-making process and as a result is encountered in a 
plethora of neuromarketing studies is mental workload 
[13-15]. Mental workload can be interpreted as the effort 
invested by consumers while making decisions (e.g., pur-
chase or not a product), with the cognitive process being 
characterized by increased theta activation (θ; 4–8 Hz) in 
the prefrontal and frontal areas. Additionally, there are 
some studies that describe mental workload as a synchro-
nization/desynchronization phenomenon [16], with the 
former referring to the process previously described and 
the latter to a decrease in alpha activity in the parietal 

lobe. Attention index [17, 18] is another cognitive index 
that is studied with respect to the decision-making pro-
cess, since focusing to something implies that a selection/
prioritization mechanism has been activated. Alterna-
tively, consumers’ attention and engagement are evalu-
ated at a population level, using inter-subject correlation 
[19, 20]. Within the same context, the memorization pro-
cess [21], highly affects the consumers’ purchase habits 
since it is more likely to select a familiar product rather 
than a relatively unknown one. Additionally, consumers’ 
decisions are highly influenced by emotions; therefore, 
the cognitive task of emotional processing is considered 
interconnected with the decision-making process [22]. 
This resulted in a series of studies dealing with the task 
of emotion recognition, as a means to unravel consumers’ 
emotional state [23, 24]. Finally, there are several studies 
that jointly examine the aforementioned indices and indi-
cators, aiming to craft models of higher predictive power 
(e.g., [16, 19, 25, 26]).

The aim of this study was to exploit Riemannian geom-
etry concepts [27, 28] so as to introduce a novel EEG-
based decoder for detecting the consumers’ preferences. 
Riemannian approaches are built upon the fundamental 
concepts of Riemannian geometry that adheres to the 
notions of differential geometry. EEG signals are repre-
sented as sample covariance matrices (SCMs) that are 
measured entities scattered over a particular Riemannian 
manifold, this of symmetric positive definite (SPD) matri-
ces [28]. The initial motivation of this work stems from 
the following facts: (i) Riemannian approaches alleviate a 
series of challenges encountered in the typical EEG ana-
lytic pipelines, like the ones previously described (e.g., 
AW, mental workload, etc.) that mainly arise from the 
inherent signal properties (e.g., non-stationarity, artifact 
contamination, and subject/session variability) [27], (ii) A 
series of Riemannian geometry concepts have been suc-
cessfully incorporated in various BCI applications and 
in several cases have led to more effective brain decod-
ing compared to traditional EEG signal analytic pipelines 
[29–32], (iii) Riemannian geometry concepts have been 
successfully employed to describe the coordination of 
different brain areas [28], since as previously described 
the decision-making process requires the synergy of dif-
ferent brain areas and brain states that when combined 
resulted in superior decoding schemes (e.g., [16, 19]), 
and (iv) Despite the rapid growth of the field, to the best 
of our knowledge, Riemannian approaches have not yet 
been examined within the context of neuromarketing.

The main hypotheses interwoven with this study were: 
(i) The suitability of Riemannian Geometry concept for 
decoding the consumers’ intentions in neuromarketing-
related scenarios and (ii) The necessity to exploit more 
than one frequency bands in the sample covariance 
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estimation for “reading” the consumers’ choices/deci-
sions. Consequently, the contribution of this work is 
twofold. We first show the suitability of the sample 
covariance descriptor within the neuromarketing con-
text. Then, we exploit Riemannian geometry so as to 
introduce a novel brain decoding scheme for detect-
ing the consumers’ preferences. To this end, each EEG 
trial is represented as a spatial covariance matrix, prop-
erly re-aligned within the SPD manifold, that in essence 
encompasses the functional covariation between signals 
recorded at distinct (recording) sites. Multidimensional 
Scaling (MDS) acts on the inter-covariance distances 
among all available covariance pairs giving rise to feature 
vectors that are then fed to a support vector machine 
(SVM) that casts a prediction. The process is repeated, 
independently, for multiple EEG frequency bands (i.e., 
delta (δ) – gamma (γ)) so as to incorporate all possible 
brain rhythms associated with the cognitive processes 
that have been identified as significant to the decision-
making process [33]. This results in the realization of an 
SVM ensemble, that accomplishes the final recognition 
of the consumers’ preferences, with the final ensemble’s 
response resulting from the decision-making rule of 
majority voting.

The proposed approach is demonstrated and validated 
based on two different EEG datasets that correspond to 
distinct neuromarketing scenarios. The first includes data 
from our own experiments, where participants evaluate 
advertisements of static content (i.e., image) and is used 
to showcase the expressiveness of covariance patterns 
when handled within a Riemannian geometry frame-
work. The second dataset is a publicly available one [19], 
where participants rank commercials of dynamic nature 
(i.e., videos) and is employed to verify the decoder’s supe-
riority against popular alternatives.

The remainder of this paper is organized as follows: 
Sect.  2 describes the methodology for formulating our 
RNeuMark decoder, Sect. 3 presents the employed data-
sets and the preprocessing steps followed, Sect. 4 is dedi-
cated to the obtained results, and Sect.  5 discusses the 
added value and limitations of the study and the future 
perspectives of this work.

2  Methodology
2.1  Riemannian geometry preliminaries
Given a single trial Xi ∈ R

S×T , i = 1, 2, . . .Ntrials with 
S and T  denoting the number of sensors and temporal 
samples, respectively, that is characterized by the corre-
sponding class label yi ∈ {0, 1} , the SCM can be estimated 
as Ci = XiX

T
i /(T − 1) , leading to an S × S representa-

tion for each trial. The derived covariance-based rep-
resentations are by definition SPD matrices, given that 
the recorded brain activity (i.e., the temporal samples; 

Τ) is sufficiently large to ensure the full rank property 
of the covariance matrix. SPDs reside on a Riemann-
ian manifold denoted by Sym+

S  , which can be visualized 
as a hypercone in the S(S + 1)/2 dimensional Euclidean 
space, that encompasses symmetric matrices associated 
only with positive eigenvalues. The Riemannian mani-
fold can be described as smooth and real manifold that is 
associated with a Euclidean tangent space at every point 
P ∈ Sym+

S  . Typically, in EEG-related studies, the afore-
mentioned Riemannian manifold is endowed with the 
Affine Invariant Riemannian Metric (AIRM). Then, the 
inter-covariance distance between a pair (Ci,Cj) of SCMs 
on the Riemannian manifold can be calculated using the 
AIRM-induced geodesic distance [34] which is formu-
lated as

with logm(.) being the log-matrix operator and ‖.‖F the 
Frobenius norm of the matrix [17].

The Riemannian distance (see Eq. (1)) can be employed 
to determine the center of mass (or geometric mean) for 
a given set of covariance matrices using the Karcher/Fré-
chet means [35]. The process boils down to the identifica-
tion of a unique point in the Riemannian manifold that 
satisfies the minimization of the sum of squared AIRM 
distances for a set of SCMs:

with Ntrials denoting the number of SCMs and δ(.,.) refer-
ring to the Riemannian distance defined in Eq. (1), while 
the computation of B is based on the iterative process 
proposed by Bini and Iannazzo [36].

2.2  Riemannian alignment
The previously described SCM representations may sig-
nificantly vary among subjects or recording sessions in 
terms of relative placement over the Riemannian mani-
fold. More specifically, the SCMs of each subject/record-
ing often follow a similar distribution (with the rest 
ones), but are centered at a different location over the 
same manifold. This is actually a covariate shift phenom-
enon that may significantly deteriorate the performance 
of any machine learning algorithm. In this direction, 
Zanini et al. [37] proposed an alignment process operat-
ing in the Riemannian framework with the scope of elim-
inating the phenomenon of “mis-placed” SCMs that will 
in turn allow the development of competent classifiers. 
The proposed data transformation is considered pivotal 
as it re-aligns all data points (i.e., SCMs) around the same 
reference point, which in our case will be the identity 

(1)δ
(

Ci,Cj

)

= �logm(C
−1/2
i CjC

−1/2
i �

F

(2)B = argminP∈Sym+
S

Ntrials
∑

i=1

δ2(Ci,P)
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matrix. Mathematically the alignment for each SCM is 
formed as

with B being the center of mass for a set of SCMs identi-
fied by Eq. (2).

2.3  A Riemannian‑based decoder for neuromarketing 
in EEG signals

The proposed approach, denoted hereby as RNeuMark, 
builds upon the previously introduced Riemannian 
geometry concepts with the scope of creating a robust 
pipeline for decoding the brain activity and consequently 
distinguishing the consumers’ preferred choices for vari-
ous neuromarketing scenarios. The proposed pipeline is 
graphically illustrated in Fig. 1, with the first two panels 
(i.e., (a) and (b)) depicting the decoder’s designing pro-
cess and the last (i.e., (c)) its application to unseen data. 
Here we assume that a train/test split of the trials is avail-
able, and both the following descriptions and illustrations 
of Fig. 1 refer to an instantiation of this split.

The initial point of our pipeline requires the band 
pass filtering of all EEG trials within a frequency band 
of interest. Then, the SCM for each trial is formulated 
as described in Sect.  2.1. The SCM derivation is fol-
lowed by the SCM alignment (refer to Eq.  (3)) that is 

(3)CA
i = B

−1/2
CiB

−1/2

performed in a personalized fashion (i.e., the esti-
mation of the center of mass delivered by Eq.  (2) is 
performed separately for each subject). Once the align-
ment process is completed the feature vector of each 
trial is constructed using MDS [38], a distance preserv-
ing dimensionality reduction technique, that acts on 
the Riemannian distances (see Eq.  (1)) between all the 
available pairs of the re-aligned SCMs.

The decoder’s next step includes the incorporation 
of a classification scheme. Since SCMs are embedded, 
as vectors in a common Euclidean space (that approxi-
mates the corresponding SPD manifold), SVMs, that 
are known to provide efficient solutions for a wide 
range of brain activity-related problems [39], can 
be employed to discriminate among the consumers’ 
choices based on the re-aligned covariance representa-
tions. In the case of a binary classification task, SVMs’ 
training algorithm is formed to determine the hyper-
plane that can be characterized as optimal, i.e., the one 
that can both not only separate the two classes but also 
cope well with unseen data. The class association of an 
unseen trial (or covariance pattern) is dictated by the 
distance between the hyperplane and the trial. Here, 
the linear hyperplane is opted not only due to its low 
cost in terms of computational efficiency but also its 
established ability to provide efficient solutions.

Fig. 1 Flowchart of the RNeuMark methodology
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The final step of the decoding scheme consists of the 
extension of the previously described computations to 
multiple frequency bands. This decision is dictated by 
the fact that the decision-making process encompasses 
various distinct brain states (e.g., approach/withdrawal 
and memorization) that are associated with different fre-
quency bands [33]. For this study, seven commonly used 
EEG frequency bands (i.e.,Fb1, Fb2, ..., Fb7 ) were exam-
ined [40]: δ (1–4) Hz; θ (4–8) Hz; α1 (8–10) Hz; α2 (10–
13) Hz; β1 (13–20) Hz; β2 (20–30) Hz; γ (30–45) Hz. In 
essence, the filtering step varies depending on the band 
limits, while the remainder of the computations are unal-
tered for each frequency band. In practice this leads to 
the formulation of an SVM ensemble consisting of seven 
distinct SVM models. The combination of the mod-
els’ predictions is based on the majority voting rule and 
the final decision regarding the label of any input trial is 
determined as the one encountered in at least four (out of 
seven) individual classifiers.

Finally, the application of the RNeuMark decoder to an 
unseen trial requires the derivation of 7 re-aligned SCM 
representations and their placement in the correspond-
ing band-specific learned embeddings prior to the acti-
vation of the SVM ensemble (refer to Fig. 1c). Τhe steps 
for deriving the aligned SCMs are in accordance with the 
ones presented in Fig.  1a. The process of incorporating 
a previously unseen SCM within a pre-learned embed-
ding corresponds to an “out of sample extension” algo-
rithm [38, 41, 42] and it is critical for the application of 
the trained model(s) to trials that have not been used in 
the initial training. This way, each unseen SCM residing 
in the SPD manifold [43] can now be efficiently formu-
lated as a feature vector embedded in the identified by 
the training process low dimensionality setting [44] and 
can now be provided to each SVM in the ensemble.

3  Experimental data and preprocessing
The efficiency and efficacy of the proposed approach are 
demonstrated experimentally, based on two EEG datasets 
captured under two distinct neuromarketing scenarios. 
The first dataset concerns the evaluation of advertise-
ments of static content that was part of a preliminary 
study conducted in our laboratories and is employed as a 
means to validate the efficacy of the proposed descriptor. 
The second dataset is a publicly available one that was 
recently released by the authors of a neuromarketing-
related study [19], concerns the ranking process of illus-
trations of dynamic content, and is used to establish the 
efficacy of the RNeuMark decoder.

3.1  Static content advertisements
Five individuals (3 males and 2 females, aged 34.83 ± 7.88), 
denoted as S1, S2, …, S5, participated in this study. Prior to 

the recording, subjects were thoroughly informed about the 
experimental procedure and gave written informed consent 
that was approved by the Ethical Committee of the Cen-
tre for Research & Technology Hellas (CERTH), with Ref. 
No. ETH.COM-68. Subjects were seated in a comfortable 
armchair placed 50  cm away from a 29-inch monitor and 
observed a series of image collections advertising supermar-
ket products.1 In total 6 image collections, consisting of 24 
different products each, were provided to the participants 
that could freely browse within them (by using the left and 
right arrow, respectively). Each image collection included 
products that belonged to the same product category (e.g., 
dairy, frozen, snacks, etc.). The task for the participants was 
to select (by left-clicking on) the products they intended to 
buy, without having any restrictions regarding either the 
time of observation for each collection or the total number 
of products being bought. The only “constraint” had been 
the instruction to perform these selections in accordance 
to their regular buying habits. This resulted in an uneven 
distribution among the trials of the two recording condi-
tions, labeled as “buy” and “no-buy,” respectively. Figure  2 
illustrates two such image collections, with the highlighted 
products indicating an exemplar case of selected products 
for each collection, while information regarding the total 
number of products bought in each collection is provided in 
the lower part of the figure.

The brain activity was recorded, with a sampling fre-
quency of 500  Hz, via Neuroelectrics’ Enobio headset 
using an eight-sensor configuration. The selected sensors, 
namely, Fp1, Fp2, F3, F4, CP5, CP6, O1, and O2, were 
arranged according to the 10–10 International System, 
while prior to the experimental procedure impedance 
for all electrodes was set bellow 10KΩ. Finally, eye move-
ments were captured via Tobii Pro Fusion eye tracker, 
with a sampling frequency of 600 Hz. They were used to 
define trials regarding the observation of the individual 
products, as intervals of stable eye fixations (refer to 
Sect. 3.3).

3.2  Dynamic content advertisements
As a means of further validation, we utilized an addi-
tional and publicly available dataset. A total of thirty-one 
healthy individuals (13 males, aged 19–41) participated 
in this study. Three presentations of the same video com-
mercial (i.e., dynamic content) for each of the six selected 
food products were delivered to the participants in rand-
omized order. The length of each video commercial was 
between 25 and 46  s. Once the video presentation was 
completed, a product ranking was derived, using binary 

1 Images were provided by a local supermarket chain and the motivation was 
to replicate the layout of a standard advertisement leaflet.
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choice trials. Here, the classification task boils down 
to the discrimination of the participants’ first and last 
choices in terms of ranking that can be easily associated 
with the decision-making process and consequently the 
intention to buy (or not) a product. Finally, the encepha-
lographic activity was registered, with a sampling fre-
quency of 500  Hz, using Neuroelectrics’ StartStim 8, 
with the eight sensors, namely, F7, Fp1, Fpz, Fp2, F8, Fz, 
Cz, and Pz, being placed mainly in the prefrontal/frontal 
brain areas. The interested reader is referred to the pub-
lication that accompanies the dataset for a more detailed 
description of the experimental process [19].

3.3  Preprocessing
Depending on the dataset, the definition of a single trial 
is different. For the static dataset a single trial is defined 
based on the time interval spent by the participant on 
each product image. The time spent can be easily deduced 
by the eye tracking metrics and is equivalent to the time 
the participant’s gaze was located within the boundaries 
of each product image. In the case of the dynamic dataset 
each trial consists of the samples in time that the partici-
pant was watching a specific video commercial registered 
by the corresponding number of sensors.

The offline preprocessing consisted of two stages. The 
first concerned the application of a wide band filter, 
where EEG signals were filtered within [0.5–45] Hz via 
a 3rd-order Butterworth filter (applied in zero-phase fil-
tering mode). The second stage removed artifacts (usu-
ally arising from eyes, muscles or cardiac pulse), using 
a semi-supervised procedure based on independent 

component analysis (ICA) and adaptive filtering. More 
specifically, we took advantage of the wavelet-ICA 
denoising method  [45] and followed a series of steps in 
order to suppress the artifacts in the recorded EEG sig-
nals: (i) Split each continuous multichannel signal into 
non-overlapping segments (10 s long), (ii) Apply ICA on 
each segment separately, (iii) Identify the artifact-related 
ICs (as in FORCe  [46]), based on their statistical char-
acterization according to kurtosis and skewness and the 
visual inspection of their spectra, (iv) Correct those ICs 
that had been identified as containing artefactual activ-
ity, using wavelet decomposition based on biorthogonal 
wavelets and wavelet shrinkage with a hard threshold 
based on false discovery rate  [47], and (v) Reconstruct 
the multichannel signal from the denoised ICs (including 
the non-artifactual ones) and use the reconstructed sig-
nals for the proposed framework. All the reconstructed 
signals were further visually inspected ensuring the valid-
ity of this approach.

In the static dataset both steps were performed in the 
continuous EEG traces prior to trial segmentation (i.e., in 
the whole recording) aiming to avoid edge effects. In the 
dynamic dataset they are performed on a single-trial level 
since the dataset is provided with a given segmentation.

4  Results
4.1  Sample covariance descriptor in static advertisements
First, we demonstrate the validity of the sample covari-
ance descriptor using the static dataset. Working for 
each subject independently, and after removing all tri-
als shorter than 1  s (which did not convey sufficient 

Fig. 2 Experimental protocol for the static dataset. Six different image collections were delivered to the participant, who was allowed to select 
products from each collection without any restriction
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information regarding delta band activity [48]), we 
derived all single-trial covariance patterns and compared 
against each other based on the Riemannian distance.

Figure  3 graphically illustrates the MDS-based repre-
sentations of these patterns as 2D points, for an indica-
tive example of this dataset (i.e., subject S5). It can be 
seen that the derived representations for this subject are 
characterized by discriminability in more than one fre-
quency bands (with β2 being the most prominent exam-
ple, followed by γ, α2, and δ), revealing the necessity to 
examine multiple frequency bands that incorporate vari-
ous cognitive states (e.g., mental workload is anticipated 
in θ band while approach withdrawal in α).

The trends observed in Fig. 3 align well with the scores 
obtained using an extension of the Wald-Wolfowitz test 
(WW-test), namely the multivariate WW test [49]. The 
multivariate WW-test was selected as a means to statis-
tically compare the two recording conditions (i.e., “buy” 
and “no-buy”) based on the reduced MDS-representation 
of the associated covariance patterns, due to its intrin-
sic characteristics (i.e., nonparametric, generalizability) 
that align well with the unbalanced nature of the data-
set. Returning to the specifics of WW-test, the lower the 
obtained score, called hereafter ww-score, the highest the 
separability among the two classes regarding a specific 
representation. For example, by visually inspecting the 
MDS embedding for subject S5 in β2 band (illustrated in 
Fig. 3), an almost clear separation among the data points 
of the two classes is observed with the ww-score being 
−  2.83 (the trend is statistically significant at a P-value 

of 0.001). On the contrary, in θ band (where the corre-
sponding data points are entangled) the ww-score is 
− 0.12. Similarly, for the patterns of the other frequency 
bands previously characterized as discriminative (i.e., γ, 
α2, and δ) the obtained ww-score ranges between − 1.57 
and −  2.05. Figure  4 includes the obtained scores for 
every subject and across frequency bands. It is evident 
that the lowest ww-score varies among subjects in terms 
of frequency bands and strength, and that there are cases 
in which more than one frequency band are associated 
with scores of high separability.

4.2  Decoding dynamic advertisements
Next, we validate the sample covariance representation 
in the form of a fully developed decoder in the dynamic 
scenario, where it was utilized to discriminate between 
the participants’ highest and lowest ranked products. The 
validation protocol followed here is the one proposed by 
the dataset’s authors [19] so as to produce results that 
would be directly comparable. More specifically, a train/
test split of 85%–15% was performed with the prereq-
uisite that all views from a selected product are either 
included in train or test set. The reported results were 
obtained via repeating the train/test split process 10,000 
times and estimating the averaged (across splits) classifi-
cation performance along with the corresponding stand-
ard deviation.

Figure  5 illustrates the classification accuracy for the 
binary task of discriminating the highest/lowest-ranking 

Fig. 3 Brain rhythm-dependent semantic geodesic maps [38] of the single-trial covariance patterns relating to static advertisements in case of 
subject S5



Page 8 of 12Georgiadis et al. Brain Informatics            (2022) 9:22 

product when the proposed decoder is employed. Addi-
tionally, it provides a direct comparison with popular 
neuromarketing metrics, namely, a conventional mar-
keting approach (i.e., questionnaire), alternative neu-
romarketing EEG indices (i.e., approach withdrawal, 
inter-subject correlation, band-power, and their fusion) 
and the combination of the fused EEG indices with the 
questionnaire responses. It is important to mention here 
that three of the previously described metrics (i.e., ques-
tionnaire, EEG fusion and the EEG fusion + question-
naire) were also examined by the authors of the dataset 
[19], with the approach of EEG fusion + questionnaire 
being identified as the better performing one. Moreover, 
two popular classification procedures operating within 
the Riemannian framework were also examined  [28,  50], 
namely, the R-kNN (Riemannian k-nearest neighbor) and 
the Tangent Space SVM, with the former examining the 
geodesic distances between covariance matrices under 
the scope of the classical kNN classifier, and the latter 
performing the classification task of SCMs in the (Euclid-
ean) tangent space delineated by the barycenter of all the 
SCMs. Both approaches were tailored to the specifics of 
the RNeuMark decoder (refer to Sect. 2.3) aiming to fair 
comparisons.

By visually inspecting Fig. 5, it is evident that the pro-
posed decoding scheme yields a significantly improved 
performance (73.11%) compared to both the question-
naires (64.42%) and the various neuromarketing indi-
ces (63.22%—66.27%), that in some cases reaches a 10% 

improvement, with the differences being statistically 
significant at a P-value of 0.001. Additionally, it is worth 
noticing that RNeuMark also outperforms the combined 
version of EEG and questionnaire features (68.51%), 
that is in line with the expected added value of neuro-
indicators in the field of marketing. This trend is statisti-
cally significant at a P-value of 0.01 when using the t-test, 
with an effect size of 1.23, being estimated using Cohen’s 
d formula  [51]. Finally, the RNeuMark decoder outper-
formed also both the R-kNN (67.12%, P-value < 0.01) 
and the Tangent Space SVM (67.89%, P-value < 0.01), a 
trend that showcases the benefit of the introduced MDS 
embedding.

5  Discussion
Riemannian geometry concepts have been widely 
explored by the neuroscientific community, with the 
information rich SCM representations providing valuable 
insights regarding brain functionality. The continuously 
increasing attention in Riemannian geometry is directly 
connected to the fact that it addresses the majority of the 
problems (e.g., non-stationarity, artifact contamination, 
and subject/session variability) encountered in classical 
signal processing algorithms resulting in more reliable 
decoding pipelines. The incorporation of such feature 
representations to the domain of EEG signal processing 
has led to robust classification schemes characterized 
by high predictive power concerning various classifica-
tion problems. Nevertheless, despite their efficiency and 

Fig. 4 The obtained ww-scores for the static dataset. Low ww-score levels indicate high separability between “buy” and “no-buy” brain state
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popularity Riemannian approaches have not yet been 
exploited in neuromarketing-related problems.

In this work we examine the efficacy of the sample 
covariance representation and we present a novel decod-
ing scheme for the appraisal of consumers’ choices based 
on the Riemannian geometry. Considering that there is 
not a conclusive answer regarding the cognitive states 
involved in the decision-making process and that these 
can differ among subjects, we decided to explore the 
SCM representations built upon EEG traces filtered in a 
set of frequency bands. Preliminary results regarding the 
static dataset (see Fig. 3) confirmed our original hypoth-
esis, indicating the need to seek brain patterns (i.e., acti-
vations) in several frequency bands and not only within 
a single band. Based on the above, the training process 
of the RNeuMark decoder is realized separately for each 
frequency band resulting in seven independent SVMs 
acting upon the MDS representations derived by the 

inter-covariance distances. Finally, the application of the 
decoder to previously unseen data includes, besides the 
multiple SCM formulation (i.e., one SCM per frequency 
band), the embedding of the unseen data points of high 
dimensionality in the data setting of low dimensionality 
formulated in the training process via the technique of 
out-of-sample extension. The expressiveness of the sam-
ple covariance descriptor was first demonstrated in the 
static dataset, where a clear separation between the two 
classes is observed in different frequency bands among 
subjects. Additionally, the static dataset also acts as a 
means of validation regarding one of our original hypoth-
eses, i.e., that the decision-making process encompasses 
various distinct brain states interconnected with differ-
ent brain rhythms, with Fig. 3 and Fig. 4 clearly indicat-
ing the variety of the optimal frequency bands among 
subjects. The descriptor’s efficacy when incorporated in 
a Riemannian geometry-aware decoder was validated in 

Fig. 5 Classification performance for the decoders of users’ preference in the case of dynamic advertisements
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the dynamic dataset, with the proposed decoder offering 
improved classification accuracies compared to ques-
tionnaires, popular neuromarketing alternatives and 
classification schemes operating within the Riemannian 
framework (refer to Sect.  4). Here, probably the most 
noticeable observation is decoder’s superior performance 
compared to the combination of EEG and questionnaire 
features that can be characterized as statistically signifi-
cant (t-test, p-value < 0.01).

One aspect of the present work that was left untreated 
and should be considered as a possible future extension 
is the transition to an online setting where advertisers 
could be informed about the effectiveness of their crea-
tions (e.g., product, packaging, commercial) in real time. 
This transition, that in essence completes a BCI system, 
requires a series of modifications since the current imple-
mentation regarding the decoding of unseen data comes 
at a complexity cost of O(S3N ) , with O(S3) and O(N ) 
being imposed by the AIRM [34] and out-of-sample 
extension [41] calculations, respectively. While linear 
complexity is acceptable for online BCI implementations, 
a cubic complexity could in some cases significantly 
hinder the online decoding process. More specifically, 
as O(S3) is directly affected by the number of recording 
sensors (i.e., S), in recordings with a sparse sensor rep-
resentation, which is the case for the validation datasets 
selected for this study, the computational cost can be 
characterized as affordable. On the contrary, in more 
dense sensor array configurations the execution time sig-
nificantly increases. The most straightforward approach 
to resolve this issue is to decrease, in an efficient way, 
the number of recording sensors, and consequently the 
size of each SCM. One such approach could be the use 
of spatial filters [52], resulting in the selection of a pre-
defined number of sensors. Alternatively, unsupervised 
approaches (e.g., [53, 54]) can be employed, aiming to 
identify the most informative sub-group of sensors that 
will be used in the formulation of each SCM.

Another potential extension of this study could be the 
conjunction of the introduced Riemannian aspects with 
the general theory of deep neural networks [55, 56] aim-
ing to create a decoding scheme that yields even higher 
classification scores. Additionally, the noted benefits 
of the Individual Alpha Frequency (IAF)  [51] to define 
the frequency ranges of the employed brain rhythms 
could be exploited toward identifying frequency ranges 
more fruitful for covariance pattern estimation than the 
standards ones. Within the same context, IAF approach 
is expected to be more useful in the case of personalized 
(or subject-specific) decoding schemes for neuromar-
keting. Moreover, alternative schemes could be exam-
ined in order to identify the most discriminant bands 
and employ only them in the subsequent classification 

task (e.g.,  [57]). Additionally, alternative automatic arti-
fact removal/suppression techniques, like Artifact Sub-
space Reconstruction (ASR)  [58] and FORCe  [46], can 
be explored aiming in the removal of artifacts in real 
time. Finally, a particularly intriguing extension of the 
present study would be the exploration of the consum-
ers’ incentive(s) behind the decision to purchase or not a 
product, given that appropriate information is collected 
via questionnaires. This would result in a multiclass clas-
sification problem (e.g., the decision was influenced by 
price, brand, discount etc.). While RNeuMark decoder 
was introduced in a binary classification setting, the 
modification steps required to incorporate several classes 
seem feasible since SCMs will be encompassed in a com-
mon Riemannian manifold, while the remainder of the 
steps up to the SVM training will be unaltered.
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