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Abstract. Objective: The wider adoption of Riemannian geometry in EEG
processing is hindered by two factors: i) it involves the manipulation of complex
mathematical formulations and, ii) it leads to computationally demanding tasks. The
main scope of this work is to simplify particular notions of Riemannian geometry and
provide an efficient and comprehensible scheme for neuroscientific explorations.

Approach: To overcome the aforementioned shortcomings, we exploit the concept
of Approximate Joint Diagonalization in order to reconstruct the spatial covariance
matrices assuming the existence of (and identifying) a common eigenspace in which
the application of Riemannian Geometry is significantly simplified.

Main Results: The employed reconstruction process abides to physiologically
plausible assumptions, reduces the computational complexity in Riemannian Geometry
schemes and bridges the gap between rigorous mathematical procedures and
computational neuroscience. Our approach is both formally established and
experimentally validated by employing real and synthetic EEG data.

Significance: The implications of the introduced reconstruction process are
highlighted by reformulating and re-introducing two signal processing methodologies,
namely the “Symmetric Positive Definite (SPD) Matrix Quantization” and the “Coding
over SPD Atoms”. The presented approach paves the way for robust and efficient
neuroscientific explorations that exploit Riemannian Geometry schemes.

1. Introduction

Computational neuroscience is the field of study in which mathematical tools and
theories are used in order to study and model brain functions. It may also
incorporate diverse approaches, ranging from physics and chemistry to electrical
engineering and computer science. The key purpose is to understand the information
processing procedures that underpin the nervous system. This understanding typically
passes through the employment of statistical methods and conventional mathematical
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tools. More precisely, a typical study in macroscopic computational neuroscience
(e.g. studying the brain at a higher level using neuroimaging technologies such
as electroencephalography, fMRI, fNRIS, etc) involves, in one way or another, the
extraction of feature descriptors that abide to a vector space. This is mainly attributed
to the fact that these descriptors mostly rely on statistical modeling in addition to
classical pattern recognition methods that are primarily based on features represented
as vectors in an Euclidean space [1, 2].

However, classical approaches fail to capture very distinctive characteristics of
neuroimaging data such as their inherent structure, the manifolds and the interrelation
across the feature dimensions [3]. In the past decade, data analysis that exploits the
concept of manifold analysis has been proved to be more robust and has been adopted
in many applications. More specifically, Riemannian Geometry has recently entered
the picture and is considered among the most promising fields in Neuroimaging data
processing [4, 5]. The particular sub-fields that have taken great advantage by this
methodological approach are electroencephalography (EEG) decoding and EEG-based
Brain Computer Interfaces (BCIs). This is due to the fact that spatial covariance
matrices, which are among the simplest functional brain connectivity estimators and a
useful tool for brain state decoding, lie on a Riemannian manifold [6].

The key property of covariance matrices that is being exploited, concerns symmetry
and positive definiteness‡. This property has led to a rapid growth of covariance matrix-
based methods, in the fields of signal processing and machine learning, by making use of
the well-established mathematical branch of differential geometry. Symmetric Positive
Definite (SPD) matrices are known to live in smooth manifolds [7]. Each one of these
manifolds, equipped with a Riemannian metric (i.e. an inner product for each point
of the tangent space that varies smoothly from point to point), forms a Riemannian
manifold [8, 9]. Riemannian geometry, therefore, provides a solid methodological
framework for manipulating covariance matrices and performing computations. Its
potential for mediating robust BCIs and EEG decoding has already been recognized
and examples from the successful application to spatial covariance matrices derived
from EEG measurements are reported in the corresponding literature [10–12].

In this context, the choice of the Riemannian metric for studying a particular
manifold is of paramount importance. Although a wide variety of metrics have been
proposed for studying the manifold of SPD matrices (e.g. Log-Euclidean, Cholesky,
Procrustes, etc) [13], in EEG signal processing the Affine-Invariant Riemannian Metric
(AIRM) is typically employed, which in turn induces a congruent invariant geodesic
distance for SPD matrices. As its name states, the metric is invariant to affine
transformations and therefore the sensor and the source spaces are equivalent under this
setting. This equivalence is based on a widely accepted assumption, that the observed
EEG is well approximated by a linear mixture of independent bipolar brain sources [14],
where the mixing model is mathematically formulated as an invertible (i.e. full rank)

‡ In rigorous terms, covariance matrices are positive semi-definite whereas strictly positive definite if
and only if they are full rank.
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mixing matrix.
Despite the advantages that Riemmanian Geometry brings into the field, a critical

issue that still needs further exploration when treating an instance of spatial covariance
as an ensemble of features, is the high computational cost during the processing of the
involved data [11]. This issue poses severe limitations, in particular for high density EEG
recordings and real-time applications. Moreover, since our features are SPD matrices
and not vectors, it is extremely difficult to adapt established machine learning and
pattern recognition algorithms as it requires in-depth knowledge of this complicated
mathematical branch.

It is exactly the two aforementioned shortcomings that we aim to address in
this work. Our work relies on the previous, widely accepted, EEG model [15]
according to which the electrical fields reflect the activity of a linear combination of
presumably independent cortical bipolar sources lying in the brain [16]. Since the
sources that produce the brain’s activity are considered anatomically fixed (at least for a
certain/short period of time/lifespan) [17], a common unmixing matrix should exist that
when applied to the EEG signal will decompose them into a set of mutually uncorrelated
signals such that their covariance will be a diagonal matrix. It becomes evident
that unmixing the recorded EEG signals and diagonalizing the respective covariance
matrices are analogous problems [18, 19]. However, exact diagonalization is only the
ideal scenario. In the actual case, the source signals are mixed with noise and then
captured by the EEG device.

Therefore, we base our approach on the Approximate Joint Diagonalization
(AJD) [20] of the spatial covariance matrices [21]. In practice, AJD finds a common
unitary matrix that allows us to approximately diagonalize all the spatial covariance
matrices (e.g. covariance matrices correspond to different segments of the same recording
session) simultaneously. Then, the obtained dominantly diagonal matrices are used,
by considering only their diagonal entries and discarding the almost zero off-diagonal
elements. The advantage offered by this procedure is twofold. Firstly, the diagonal
elements can be used to reconstruct the covariance matrices under a common mixing
model (expressed by the common unitary matrix uncovered through AJD). Intuitively,
this procedure serves as denoising on the spatial covariance matrices and leads to more
robust estimates of the spatial covariance pattern. Secondly, since the mixing matrix is
common for all the covariance matrices and the employed Riemannian metric is invariant
to affine transformations, we are able to exploit the covariance matrices in their diagonal
form and treat them as vectors. Therefore, the Riemannian Geometry tools typically
employed in such settings are simplified, pave the way for computationally efficient
matrix calculations while simultaneously maintain the structure of the original matrix
manifold. The proposed approach is outlined in Figure 1.

Our approach is initially mathematically established and then experimentally
validated by employing both real and synthetic EEG data. More specifically, we
analytically prove that the reconstructed matrices are approximately similar to the
original ones and maintain the SPD property. Hence, Riemannian Geometry tools
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Figure 1. Outline of the proposed methodology. Initially the “average” eigenspace
(i.e., the assumed common mixing matrix) is uncovered utilizing the AJD method.
Then, this eigenspace is employed to diagonalize the covariance matrices. One may
either exploit their strictly diagonal form (depicted in step 2) or reconstruct the
covariance matrices (depicted in step 3).

indeed can be employed for appropriate handling of the reconstructed covariance
matrices. Additionally, we show that typical Riemannian Geometry-based operations
(i.e. Karcher mean calculation and geodesic mean re-recentering) are simplified after
the diagonalization procedure. Then, we show experimentally that the proposed
transformation over a set of covariance matrices that belong to the same recording leads
to a new representation that preserves the structure of the original manifold. Moreover,
we introduce two approaches that exploit the fact that the reconstructed matrices
are jointly diagonalizable in order to facilitate computationally efficient neuroscientific
explorations. The first approach extends the idea of vector quantization to the
Riemannian manifold of SPD matrices. This enables the realization of covariance matrix
quantization in an effort to pave the way for a computationally efficient covariance-based
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microstate analysis [22]. The second approach, termed as Coding over SPD Atoms, is
based on the idea of expressing a diagonal SPD matrix as a positive sum of diagonal
covariance-atoms so as to enable a computationally efficient classification approach for
a demanding EEG-based BCI application.

2. Methodology

Here, we present our approach in a formal way. Emphasis is given on the reconstruction
of spatial covariance matrices under a common eigenspace. This procedure can be
interpreted as a robust estimation for covariance matrices under the constraint of a
common mixing matrix and uncorrelated activity in the source space. Beyond that, it
is our scope to re-introduce basic concepts of Riemmanian Geometry, that are typically
employed in EEG processing, tailored specifically for jointly diagonalizable spatial
matrices. To further demonstrate the simplicity induced by our approach we present
two methodologies, namely SPD Matrix Quantization and Coding over SPD Atoms,
with the sole purpose being the demonstration of the capabilities that our approach
brings. Most of the code that was deployed for this research is publicly available§.

2.1. Elements of Riemannian Geometry

Let Xi ∈ RE×T , i = 1, . . . , n be a multichannel EEG segment, where E denotes the
number of electrodes, T the number of time samples and n the number of available
segments (or trials). Each segment (assuming zero mean signals) can also be described
by the corresponding spatial covariance matrix Ci =

1
T−1

XiX
⊤
i ∈ RE×E, where (·)⊤

denotes the transpose operator. By definition and under a sufficiently large T value
to guarantee a full rank covariance matrix, spatial covariance matrices are SPD that lie
on a Riemannian manifold instead of a vector space (e.g. scalar multiplication does not
hold on the SPD manifold). In the field of differential geometry, a Riemannian manifold
is a real, smooth manifold endowed with an inner product on the tangent space of each
point that varies smoothly from point to point.

When treating EEG data, the manifold of SPD matrices denoted by Sym+
E = {C ∈

RE×E : x⊤Cx > 0, for all non-zero x ∈ RE}, is typically studied when it is equipped
with the AIRM [7],

⟨A,B⟩P ≜ Trace(P−1AP−1B) (1)
for P ∈ Sym+

E and A,B ∈ T+
E (P), where T+

E (P) denotes the tangent space of Sym+
E at

P. Then, the following geodesic distance is induced

δ(Ci,Cj) =
∥∥∥logm(C

−1/2
i CjC

−1/2
i )

∥∥∥
F
=

√√√√ E∑
q=1

log2λq (2)

where logm(·) denotes the matrix logarithm operator and λq the eigenvalues of the
matrix C

−1/2
i CjC

−1/2
i or equivalently of the matrix C−1

i Cj. We note that these two
§ https://github.com/fkalaganis/Riemannian_AJD
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matrices are similar (i.e., hold the same eigenvalues) and that the indices i and j can
be permuted. Among the other useful properties that are discussed thoroughly in [23],
δ is congruent invariant for non singular matrices W, i.e. δ(WCiW⊤,WCjW⊤) =

δ(Ci,Cj). This is an important property in EEG signal processing since it provides
equivalence between the sensor and the source space [6]. According to the prevailing
EEG model, the recorded activity is well approximated by a linear mixture of source
signals. Hence, Xi = MSi with M denoting the mixing matrix and Si the source signals.
Then, by substituting the observed signal with the equivalent mixing of sources, one may
obtain the following covariance matrix, Ci = 1

T−1
MSiS

⊤
i M

⊤. Therefore, the mixing
procedure in the time domain results in a congruent transformation in the corresponding
covariance matrices. It becomes obvious that since δ is invariant to such transformations,
the two spaces are considered equivalent. In a strict mathematical sense this is partially
true (e.g., for certain forms of M) and this topic is thoroughly discussed in [6]. Hereafter,
the terms “AIRM-induced geodesic distance” or simply “geodesic distance” will be used
interchangeably and will refer to Equation 2.

2.2. Revisiting Riemannian Geometry through AJD

The mixing matrix, M, depends on the dipole position and orientation in the brain,
the physical properties of the head and the positioning of the electrodes on the scalp.
Therefore, it is sound to consider that M is constant for a certain period of time
(e.g. during a single recording session). Given that sources are independent and the
corresponding activity (e.g., source signals) is mutually uncorrelated, the source spatial
covariance matrices are diagonal.

The estimation of M from the observed sensor-signals is an ill-posed problem
referred to as Blind Source Separation (BSS). There are two approaches related to the
BSS problem[24]: The most popular is known as Independent Component Analysis [25],
where the goal is to transform the data such that the components become as independent
as possible. An alternative approach is based on the notion of diagonality of certain
characteristic matrices derived from the data [26]. In such a case, one may approximate
M−1 by exploiting the concept of AJD [27]. The joint diagonalization of a set of
symmetric square matrices consists in finding the orthonormal change of basis, U such
that U⊤ = U−1, which makes the matrices as diagonal as possible. When the matrices
in the set are “almost exactly jointly diagonalizable” (which is the prevailing assumption
here), this approach intuitively defines the “average eigenspace” of the matrix set [20].

Following the notation of section 2.1, with Ci we will denote the spatial covariance
matrices that correspond to the EEG segments, Xi. Let U be the orthonormal matrix
calculated by AJD over the set of Ci with i = 1, . . . , n that estimates the mixing
matrix M. Then, each Ci can be converted to a dominantly diagonal matrix by
following the transformation, U⊤CiU. Here we introduce the diag(·) notation, which
discards the non-diagonal elements of a matrix and results on a strictly diagonal matrix
whose elements correspond to the elements of the main diagonal of the initial matrix.



7

Therefore, given that diag(U⊤CiU) is dominantly diagonal, we can reconstruct (e.g.,
re-estimate them under the constraint of a common eigenspace) all the spatial covariance
matrices as C̃i = Udiag(U⊤CiU)U⊤.

Lemma 1: The reconstructed covariance matrices are a “good” approximation
(i.e., approximately similar matrices) of the original ones.

Proof: Let U be an orthonormal matrix that approximately diagonalizes an SPD
matrix C. Since C is an SPD matrix it has an eigen-decomposition C = VΛV⊤ with Λ

being a diagonal matrix with positive elements only. Since U approximately diagonalizes
C then we have the approximately diagonal matrix as follows:

L = U⊤CU (substitutingCwithVΛV⊤)

diag(L) ≈ U⊤VΛV⊤U (multiplying left byU and rightU⊤)

Udiag(L)U⊤ ≈ UU⊤VΛV⊤UU⊤ (recall thatU⊤U = UU⊤ = I)
Udiag(L)U⊤ ≈ VΛV⊤ (substituting backVΛV⊤ withC)

Udiag(L)U⊤ ≈ C

(3)

It becomes obvious from the penultimate equation that the reconstructed covariance
matrices are almost similar to the initial ones (i.e., hold the same eigenvalues). This
is an important aspect of the reconstruction process since the AIRM-induced geodesic
distance is highly affected by the involved matrices’ eigenvalues. Moreover, since δ

is invariant to congruence transformations, δ(Ci,Cj) ≈ δ(diag(Li), diag(Lj)), working
with the reconstructed diagonal matrices is equivalent to working with the initial ones.
We note that in supplementary material we show that δ(Li, diag(Li)), which expresses
the approximation error between the initial and the reconstructed matrix, is bounded
by

√
E||L−diag(L)||√∑

i min{L2
ii,λ

2
i }

where Lii and λi are the diagonal elements and the eigenvalues of L
respectively. Additionally, the Results Section provide experimental evidence to support
the validity of this reconstruction process.

Having shown the aforementioned, we need to show that the reconstructed matrices
(as obtained through force diagonalization) still hold the SPD property. The proof lies
on the concept that a matrix is SPD if and only if its eigenvalues are strictly positive.

Lemma 2: The reconstructed covariance matrices (i.e., under the constraint of a
common eigenspace) maintain the SPD property.

Proof: Let U be an orthonormal matrix and C a full-rank spatial covariance
matrix. Since C is a real SPD matrix, it admits an eigen-decomposition C = VΛV⊤

with V being orthonormal and Λ being a diagonal matrix with positive elements on its
diagonal. We transform C such that L = U⊤CU. By setting Q = U⊤V, we may re-
write L as L = QΛQ⊤, with Q being also orthonormal (the product of two orthonormal
matrices is also orthonormal). Then, the diagonal entries of L are in the form of:

Lii = Qi1λ1Qi1 +Qi2λ2Qi2 + · · ·+QinλnQin = Q2
i1λ1 +Q2

i2λ2 + · · ·+Q2
inλn (4)

Since all λi are positive (eigenvalues of an SPD matrix) and there exists at least one
non-zero matrix element Qij for each i (Q constitutes a base in RE), then the above
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summation is strictly positive. Since these elements serve as the eigenvalues of the
reconstructed covariance matrix, this matrix still holds the SPD property. This fact
allows us to employ Riemannian Geometry in order to manipulate the reconstructed
covariance matrices.

2.3. Exploiting Jointly Diagonalizable Matrices in Riemannian Geometry

In this section we present two approaches that exploit the fact that the reconstructed
spatial covariance matrices (as obtained through the process described in Section 2.2)
admit a common eigenspace defined by U. Before describing the advanced
neuroscientific explorations, namely i) SPD Matrix Quantization, and ii) Coding over
SPD Atoms, we will prove that the geodesic mean (i.e., Karcher mean) of diagonal
SPD matrices is also a diagonal SPD matrix. Moreover, we will show that the typical
Riemannian Geometry-based transfer learning procedure followed to align different sets
of spatial covariance matrices (each stemming from different subjects and/or recording)
so that each set of matrices has the identity matrix as its geodesic mean [28], serves
as a scaling factor in order to normalize the energy of the source signals (each signal
normalized by a different scaling factor).

Let us denote by {Ci : i = 1, . . . , n}, a set of SPD matrices that admit a common
eigenspace. Each Ci admits an eigendecomposition in the form of Ci = UDiU⊤ with Di

being a diagonal matrix with positive elements only and U being an orthonormal matrix
that expresses their common eigenspace. We know that K(U⊤CiU) = U⊤K(Ci)U,
where K(·) denotes the Karcher mean over a set of matrices. Hence, K(Di) =

U⊤K(Ci)U, or equivalently, K(Ci) = UK(Di)U⊤. By showing that the matrix K(Di)

is also diagonal we are able to infer that the geodesic mean of matrices that admit a
common eigenspace also admits the same eigenspace.

Lemma 3: The Karcher mean, under the AIRM, of diagonal matrices is also a
diagonal matrix.

Proof: The computation of the Karcher mean relies on the convergence of the
following iterative formula

K(ν+1)(Di) = K(ν)(Di)exp

(
−θ

n∑
i=1

logm
(
D−1

i K(ν)(Di)
))

(5)

with ν expressing the iteration step, θ a positive tuning parameter and K(0)(Di) = I. It
is known that the power, the logarithm and exponentiation of a diagonal matrix lead to
a diagonal matrix. Moreover, the product of two diagonal matrices is a diagonal matrix
too. Therefore, we may deduce from Equation 5 that the Karcher mean of diagonal
matrices is also a diagonal matrix.

Having the Karcher mean over {Ci} calculated, which for sake of notation simplicity
will be denoted as KC , we may align the set of covariance matrices by applying
the transformation K−1/2

C CiK−1/2
C . Then, the geodesic mean of the new, transformed

covariance matrices, will be the identity matrix. This, transfer learning, procedure is
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typically employed in order to align multiple recordings so that each set of covariance
matrices (i.e., each set stems from a different recording or subject) is centered at (i.e.,
has as geodesic mean) the identity matrix. Such a procedure offers the ability to use
data from previous sessions or from a dataset of past users to calibrate and initialize
the decoding scheme, allowing a calibration-less mode of operation.

It is important to notice that the previous algorithmic procedure of alignment,
which operates on the covariance matrices, is equivalent to applying the K−1/2

C as a
spatial filter in the time domain. Therefore, the sensor signals Xi are spatially filtered as
K−1/2

C Xi. Exploiting Lemma 3, this is equal to UK−1/2
D U⊤Xi. Then, replacing Xi by its

linear mixture of sources (where U serves as the mixing matrix) leads to UK−1/2
D U⊤USi.

Since U is orthonormal the spatial filtering operation is equal to UK−1/2
D Si where the

term K−1/2
D Si expresses the scaling of sources. More precisely, each row of Si, which is

a source signal, is multiplied by the corresponding diagonal element of K−1/2
D . After the

source signals have been scaled, they are mixed by U.

2.3.1. SPD Matrix Quantization In this section we exploit jointly diagonalizable SPD
matrices in order to reformulate the concept of matrix quantization in a computationally
efficient way. As in the typical vector quantization, it allows us to assign each SPD
matrix to its closest prototype and consequently estimate the discretized description of
a probability density function over a set of predefined prototypical matrices. Therefore,
the following approach gives rise to a computationally efficient framework for functional
connectivity microstate analysis that abides to Riemannian Geometry. The advantage
of this approach is that brain’s functional connectivity is investigated as whole, instead
of studying connectivity features individually.

The most straightforward way to obtain the prototypical matrices, collectively
referred to as the codebook, is through the k-Means algorithm. The classical k-
Means algorithm has been extended particularly for the SPD manifold under several
Riemannian metrics, including the AIRM [29]. Given that the initial set of matrices
admits a common eigenspace and the prototypes are calculated via the Karcher mean,
these prototypes abide to the same eigenspace too. In order to assign each covariance to
the closest prototype, it is essential to calculate its distance from each of the available
prototypes.

Formally, the codebook {Ai} with i = 1, . . . , k divides the manifold into k voronoi
regions as follows

Ri = {C ∈ Sym+
E : δ(C,Ai) ≤ δ(C,Aj) ∀i, j = 1, . . . , i− 1, i+ 1, . . . , k} (6)

Then, to assign each spatial covariance matrix Ci to its closest Ai, one has to
calculate δ(Ci,Aj) ∀j = 1, . . . , k. However, both of the involved matrices admit a
common eigenspace U. By exploiting the congruence invariance property of δ we may
simply calculate δ(U⊤CiU,U⊤AjU). Since under this transformation the matrices are
diagonal, the calculation of δ reduces from O(E3) to O(E) with E being the number
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of sensors. Therefore, the computational cost, in the context of Riemannian geometry-
based microstate analysis, is significantly reduced. This is supported by the fact that the
distance function, δ, has to be computed k times (k denoting the number of prototypes
that form the codebook) for each of the given covariance matrices in order to uncover
the closest prototype.

2.3.2. Coding over SPD Atoms In the context of Riemannian geometry, brain’s
functional connectivity is typically captured by a single covariance matrix and studied
as a whole. However, this functional connectivity estimator might squeeze, in a
fuzzified summary, distinct underlying neural processes that take place in the brain
simultaneously or sequentially. In other words, the estimator may result in an artificial
superposition of connectivity patterns (“sub-connectivities”), with each one having
the potential to uniquely be ascribed to a different neural process. Therefore, when
investigating a particular neurophysiological response, it is expected that among the
involved sub-connectivities only few will have a dominant presence, presumably those
directly related to the phenomenon of interest. The following approach paves the way
for neuroscientific explorations of such kind.

The key concept here is to re-write a spatial covariance as a positive sum of
prototypical covariance matrices (will be referred to as covariance atoms or simply
atoms). Although the process of obtaining the covariance atoms is a critical aspect, it is
beyond the scope of this work to propose such a methodology. Here we exploit the fact
that covariance matrices can be reconstructed by admitting common eigenvectors and
we focus on the representation over the atoms (e.g., as obtained through the Riemannian
k-Means). We show that this problem is reduced to the problem of obtaining a
representation of the vectors holding the eigenvalues under a positivity constraint.

Let {Ai} with i = 1, . . . , k be the set of atom matrices and C a spatial
covariance matrix. We note that each of Ai and C are SPD matrices that admit an
eigendecomposition UDiU⊤ and UΛU⊤ respectively. We wish to find the appropriate
weights wi ≥ 0, i = 1, . . . , k such that C and w1A1 + w2A2 + · · · + wkAk are as close
as possible under the AIRM-induced geodesic distance. We note that the positivity
constraint imposed for wi ensures that the resulting matrix maintains its SPD property.
By substituting the matrices with their eigendecomposition forms, the above summation
can be written as U(w1D1+w2D2+ · · ·+wkDk)U⊤. Since δ is invariant to congruence,
we want to minimize δ(Λ, w1D1+w2D2+ · · ·+wkDk). By exploiting δ’s analytic form,
we obtain the following optimization problem:

argmin
w1,...,wk

E∑
j=1

[
log

(
Λj

w1D1j + · · ·+ wkDkj

)]2
s.t. w1, . . . , wk ≥ 0 (7)

where Λj denotes the j-th diagonal element of Λ and Dkj to the j-th diagonal element
of Dk (i.e., the element that lies at position (j, j)). Since the involved matrices in the
optimization problem are strictly diagonal the formula can be expressed using vectors
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that contain their diagonal elements. Formally, Equation 7 is a non-linear optimization
problem imposed by linear constraints, therefore, a wide variety of solvers can be
employed to reach an optimal solution [30, 31]. The simplicity of our solution comes
in contrast to the existing frameworks for SPD coding over atoms. Existing approaches
found in recent literature [32], which do not exploit the concept of a common eigenspace,
are based on complex mathematical manipulations and require specialized software for
reaching a solution. A procedure that comes with an extremely high computational
cost.

3. Datasets

In order to demonstrate and validate the proposed methodology we employ three distinct
EEG datasets with each one enabling us to present its implications in different aspects
of brain signal analytics. The first dataset concerns multi-channel EEG recordings of
event related responses and it is included here in an attempt to differentiate between
attentive and passive recording condition. The second, is a motor imagery dataset and
our methodology will be employed so as to differentiate between distinct mental states
(imaging of closing left or right fist). Finally, the proposed approach is also validated
on synthetic EEG data. Synthetic data generation allows us to construct EEG signals
that exhibit particular phenomena of interest.

3.1. Dataset A: Attention

Six subjects (four female, two male) participated in a pc-game, where they were
engaged into the scenario of controlling a racing-car by means of eye-saccades while
their brain activity was being recorded with 64-channel EEG device [33]. While the car
was moving ahead, a wall appeared suddenly on the left (right) of the road and the
participant had to avoid it by performing an anti-saccade (i.e. moving his gaze towards
the opposite direction). The wall had a checkerboard pattern embedded on it, like
the ones traditionally employed to elicit the transient visual evoked potential (tVEP)
responses in neurophysiology research. During a second round, the subjects performed
the same task but this time without having to perform the anti-saccade. The subjects
should simply watch the racing car passively while it was avoiding automatically the
wall. The first condition is referred to as attentive whereas the second as passive and
the brain-decoding task was defined as “predict the attention level” based merely on
the early visual evoked response. This is a challenging task since the spatio-temporal
characteristics of the EEG do not offer any significant separability [34]. With the scope
of isolating the neural patterns that are mostly associated with the conditions we aim to
separate, the multichannel signal was first band-limited within the alpha-rhythm range
(i.e. 8-13 Hz) [35, 36] and covariance patterns were derived for the latency range [-50
400] msec, with zero denoting the latency of wall appearance. This time interval includes
a well-defined brain activation pattern that appears in both cases (i.e., attentive and
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passive), known as P100 response, and excludes the anti-saccade event which takes place
3.6 seconds later.

3.2. Dataset B: Physionet Motor Imagery

The original dataset (DOI: 10.13026/C28G6P) contains the brain activity of 109 healthy
participants, recorded via a 64-sensors EEG array at a sampling frequency of 160 Hz [37].
The participants’ brain activity was recorded while they were performing a series of
pseudo-randomized cue-triggered Motor Imagery (MI) tasks. Initially, we excluded data
from six participants (subjects 88, 89, 92, 100, 104 and 106) due to inconsistencies
in either the sampling frequency or the duration of the performed tasks. Then, we
selected runs corresponding to the MI of left/right hand. Finally, we extracted trials
corresponding to MI hand movements in the form of segments starting with the visual
cue and lasting for 4.1 seconds.

3.3. Dataset C: Simulated Data

Simulated data were employed to validate the introduced framework with specific
benchmark connectivity patterns that follow certain spatial or/and temporal
modulations. Briefly, an EEG forward model was generated using the OpenMEEG
package [38]. The model consists of 2004 dipoles placed over the cortex that generate
electrical fields registered, on the scalp, via 64 electrodes following the 10–20 system.
Projecting dipole time series to the scalp through a particular mixing matrix is a
physiologically plausible model of EEG signals [39]. Dipole time series were generated as
pink noise apart from few specific dipoles that were assigned activations that resulted
from the band-pass filtering of white gaussian noise (so as to simulate narrowband
nonstationary timeseries) [40]. The generated timeseries however may vary from case to
case (e.g., based on the aspect of the introduced methodology we wish to demonstrate),
and will be described with more detail within the Results section accordingly.

4. Results

Our initial and primary concern is to demonstrate that the reconstruction of the spatial
covariance matrices under a common eigenspace preserves the original data structure.
In addition, we dedicate two subsections, for SPD Matrix Quantization and Coding over
SPD Atoms respectively, in order to showcase the implications when spatial covariance
matrices that admit a common eigenspace are being employed. We note that when
a classification accuracy is reported, the eigenspace (i.e., an estimation of the mixing
matrix) is uncovered based on the training set only. Additionally, it should be noted
that in order to depict the spatial covariance matrices in two dimensions, by means
of geodesic semantic maps, we employ the classical Multi-Dimensional Scaling (cMDS)
algorithm [41] combined with the AIRM induced geodesic distance unless it is otherwise
stated.
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4.1. Manifold Structure Preservation

Undeniably, forcing a set of matrices to be jointly diagonalizable leads to some sort
of distortion and to loss of information. To quantify this loss we employ a “diagonal
dominance” metric [42] which, intuitively, expresses the percentage of matrix energy
that lies on its main diagonal. Therefore, after the AJD of matrices (i.e., prior to
strict diagonalization and reconstruction), we calculated the ratio of the L2-norm of
the diagonal elements over the matrix Frobenius norm. For the datasets A and B,
the obtained average diagonal dominance values were exceeding 80% in both cases.
Whereas, in the case of dataset C (as described in this Subsection), the average diagonal
dominance value was approximately 88%. Beyond that, it is important to demonstrate
experimentally that this process neither provides an altered view of the underlying
physiological processes nor interferes with the structure of the data manifold. To this
end, we exploit all of the datasets described in Section 3.
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Figure 2. 2D semantic geodesic map, obtained via the cMDS algorithm, of spatial
covariance matrices under the AIRM-induced geodesic distance. Each dot corresponds
to a single-trial spatial covariance matrix with its color indicating the corresponding
condition. The left and right map correspond to the original and the reconstructed
covariance space respectively. Some particular neighborhoods are marked and indexed
in order to demonstrate the differences between the two spaces.

We commence with results concerning Dataset A. Figure 2 presents an indicative
2D semantic geodesic map [43], achieved through the cMDS algorithm. Each dot
corresponds to a spatial covariance matrix of a single-trial response (all belonging to the
same participant) and as it can be seen, the semantic geodesic maps are similar in both
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cases (x-Axis is inverted). This fact serves as an indication that despite the error that
is being introduced by the reconstruction process, the structure that underpins these
spatial covariance matrices remains unaltered. Moreover, some particular neighborhoods
have need marked and indexed in order to demonstrate how the reconstruction process
affects the data structure in more detailed manner. Specifically, neighborhood #1 is
identical in both of the semantic maps. On the other hand, neighborhoods #2 and #3
have been affected (mostly exhibiting orientation and scaling deformations).

To quantify the aforementioned tendency, we adopted a structure preservation
metric that is based on the k-Nearest Neighbor (kNN) [44]. In the original covariance
space we calculate for each spatial covariance matrix its five nearest neighbours. This
calculation is also performed on the reconstructed covariance space. The metric indicates
the number of neighbours being common (their order is not being taken into account) in
the two spaces. On average, over the six subjects, we calculated an 82% neighbourhood
preservation. In other terms, this means that approximately, four out of the five
neighbours in the original covariance space continue to belong to the 5-neighbourhood in
the reconstructed covariance space. Finally, it is important to study how classification
accuracy is affected by the reconstruction process. To this end, a typical Riemannian
Geometry classifier is employed to measure the classification accuracy in the two spaces
(original and reconstructed). Considering the passive vs attentive task we managed to
obtain 87% and 89% on the original space when the chessboard appeared on the right
and left side respectively. The corresponding accuracy values for the reconstructed
space appeared as 91% and 92% under the same cross-validation folds. We note that no
statistical significance was found in the reported classification accuracies (p > 0.1). With
respect to the computational cost of classifying a covariance matrix, the reconstructed
matrices require on average 75% less time than the original ones.

Then, we examine our approach on Dataset B, a dataset that deals with a
popular BCI paradigm and contains a large amount (i.e., 103) of subjects. Previously,
we presented evidence that the reconstruction process does not affect the covariance
matrices that originate from a single recording session. However, the BCI domain
typically deals with signals that stem from a variety of recording sessions and/or
subjects. Hence, transfer learning procedures are employed in order to facilitate
subject-independent schemes. Here, a different eigenspace is uncovered for each subject
independently and then the reconstructed covariance matrices are aligned accordingly
(refer to Subsection 2.3). It is therefore crucial to demonstrate that the original
geometrical relations between the covariance matrices of different subjects are not
tampered by the reconstruction procedure.

In the left panels of Figure 3 we present the 2D semantic geodesic maps, as
obtained with the cMDS method, for the original and the reconstructed covariance
matrices. For each subject a pair of prototypical covariance matrices has been calculated,
corresponding to the Karcher mean of MI-left and MI-right trials. These prototypical
covariance matrices are presented in blue and orange color respectively. Since the data
have been aligned, each blue-red pair is centered at the identity matrix which is located
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Figure 3. In the left panels shown are the semantic geodesic maps of the original
(top) and reconstructed (bottom) covariance patterns corresponding to Dataset B. For
every subject, two prototypical covariance patterns (left/right hand accordingly) had
been mined first, and then all these patterns were compared against each-other based
on AIRM induced geodesic distance. Blue/orange dots correspond to motor imagery of
left/right hand, while two such pairs of prototypes coming from two randomly selected
subjects are joined via lines. In the right panels, shown are the subject specific geodesic
distances for the whole Dataset B. These distances quantify the differences in the two
recording conditions (MI-left vs MI-right).

at (0,0) in the 2D plane. As it can be seen, the distribution of prototypical covariance
matrices over the two spaces (original and reconstructed) is almost identical. Moreover,
two straight lines connect the MI-left/right pairs of two randomly chosen subjects. This
illustration serves as a strong indication that the relation between covariance patterns
belonging to different subjects is only slightly affected. Another important aspect that
should be investigated in such a dataset concerns the separability of the two conditions
(left vs right hand imagery movement). To this end, we employ the multivariate Wald–
Wolfowitz (WW) test and calculate the corresponding score [45]. The obtained values
(-11.47 and -10.76 for the original and reconstructed space respectively) are similar
in both cases and indicate that data separability is well maintained. Additionally,
we estimated the distances between the prototypical covariance matrices for every
subject independently (i.e., in total 103 task-related deviations, shown in the rightmost
panels of Figure 3. As it can be seen, the calculated distances in the two spaces
exhibit similar characteristics. Ignoring the DC-offset that is being absent in the
reconstructed space, the distances maintain their original trend. These measures provide
experimental evidence that the reconstructed space maintains the separability of the
original one. To quantify the aforementioned, the pairwise linear correlation coefficient
was calculated with a value exceeding 70% value (statistically significant; p < 0.001).
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Moreover, in terms of classification performance (subject specific; 10-fold cross validation
scheme), under the Minimum Distance to Mean (MDM) classifier [6], the obtained
average accuracy for the original and reconstructed covariance matrices were 62.27%
and 61.97% respectively (same folds; no statistically significant difference). Concerning
the computational cost, the classification time of a single covariance matrix is, again,
approximately 75% less in the case of the reconstructed than the original. It is noted
that during the testing phase of the MDM classification scheme, the geodesic distance
of a new test sample from the prototypical centers (each corresponding to the geodesic
mean of each class) is calculated and the label of the closest prototype is assigned to the
testing sample. Hence, the reported reduction in the computational cost incorporates
the gain from the estimation of two geodesic distances (of test sample to either of the
prototypes) in an efficient way.

Finally, we examine the validity of our method on simulated EEG data. To this
end, we generated simulated data that belong to two distinct classes, namely class
A and class B. Initially, we selected a kernel dipole for each class and assigned an
alpha-band activation signal, by means of filtering a white noise signal. Then, to its 30
closest neighbours we assigned a similar activation pattern with the distance modulating
the strength of the activation (i.e., the strength was fading while moving away from
the kernel dipole). Pink-noise activations were assigned to remaining dipoles. This
simulated data generation strategy allows us to examine our approach when a particular
brain region is governed by a non-diagonal covariation pattern (i.e., source signals of
this region are not independent). We note that in class A the kernel dipole was located
in the left occipital brain region whereas in class B it was located in the right occipital
brain region. The neurophysiological characteristics of the simulated single-trial signals
are depicted in Figure 4 (panels A, B and D). As it can be seen in panel C, where the 2D
semantic geodesic map of the reconstructed single-trial covariance matrices (as derived
from 1.5 seconds long signals) is depicted, the reconstruction process clearly preserves
the separability of data.

4.2. SPD Matrix Quantization

To demonstrate the new possibilities opened by the reconstruction of covariance matrices
under a common eigenspace, we apply the method presented on Subsection 2.3.1.
Using the Riemannian k-Means method over a set of spatial covariance matrices,
we initially uncover a codebook. Since we aim to employ this method in order to
perform connectivity-based microstate analysis, for each single-trial a series of covariance
patterns is calculated. Then, each of these patterns is assigned to its closest prototype
(which is part of the codebook) and in this way the single-trial covariation dynamics
are represented by means of a symbolic timeseries.

In order to examine the efficiency of this application, we exploit the recordings
of Dataset A. Our aim here, is to demonstrate that the concept of SPD Matrix
Quantization is capable to uncover the differences between the passive and the attentive
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Figure 4. A) Dipole activations for the two classes of simulated single-trial signals.
In the first class an activation pattern appeared on the left occipital dipoles whereas in
the second on the right. Colorcoding (from red to yellow) indicates the strength of the
activation pattern. Dipoles colored in gray correspond to pink noise. B) Topographic
scalp potentials for the two classes. They were obtained by calculating the leading
eigenvector for the average covariance matrix of each class. C) 2D semantic geodesic
map of the Single-trial covariance patterns. Blue and orange color indicate coavariance
matrices of Class A and B respectively. D) Indicative examples of the simulated signals
at two sensors (Cz and O1). Blue and orange color indicate single-trial signals of Class
A and B respectively.
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Figure 5. In the top panel, we present the symbolic timeseries for single-subject trials
belonging to Dataset A. Each color represents a different prototype. In the bottom
panel, the distribution of each condition over the four prototypes is illustrated.

conditions. The time-varying covariance patterns were calculated with a step size
equal to 0.1 seconds and 1 second long window size. Then, the Riemannian k-Means
algorithm [29] was employed in order to uncover the four (as decided in preliminary
analysis) protypical matrices that formed the codebook. Figure 5 depicts the symbolic
times-series for the passive and attentive conditions that belong to the same, indicative,
subject. Moreover, we present the aggregated distribution of the symbolic-timeseries
over the codebook. As it can be seen, the prototypes #1 and #4 are capable of
discriminating the attentive and passive single trials. To quantify the aforementioned,
we were able to achieve an average classification accuracy of 93% and 94% when the
wall appeared on the right and left side respectively. The reported accuracy values
are based on a 10-fold cross validation scheme, using linear SVMs, in a subject-
specific manner. Although similar classification results were achieved when the original
covariance matrices were employed (inferior by 1%, but without a statistically significant
difference), it should be noted that the classification time of a reconstructed covariance
matrix requires approximately 95% less time compated to an original one.

To further demonstrate this approach we generated 100 artificial signals, 3 seconds
long each, according to the model described in Subsection 3.3. All dipole signals were
generating pink noise, apart from one that was generating nonstationary alpha-band
activity. Half of the simulated trials were characterized by their alpha-band energy which
was modulated by a sigmoid function (i.e., increasing energy) whereas the other half
had their alpha-band modulated by an inverse sigmoid function (i.e., decreasing energy
in alpha band over time). Again, the time-varying covariance matrices were calculated
with a step size equal to 0.1 seconds and 1 second long window size. The key concept
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here is to illustrate that SPD matrix quantization on the time-varying reconstructed
matrices is capable to detect such subtle, time-varying, changes. Figure 6 depicts
the colorcoded symbolic times-series for the two aforementioned conditions alongside
with their corresponding distributions over the codebook. As expected, the distribution
diagrams do not exhibit any significant separability for the two conditions, since, the two
conditions differ in the order of appearance of the prototypes. However, the presented
quantization, illustrated in the form of colorcoded timeseries, follows the trend of the
source signals (i.e., energy modulated by a sigmoid function). This serves as a clear
evidence that the introduced reconstruction process does not tamper the underlying,
simple yet subtle, physiological processes.

Figure 6. On the top side of the figure we present the symbolic timeseries for the
simulated EEG data. Each color represents a different prototype. On the bottom the
distribution of each condition over the four prototypes is illustrated.

4.3. Coding over SPD Atoms

In this section we demonstrate the employment of Coding over SPD Atoms on
Dataset A. Our effort is mostly dedicated to demonstrating how the reconstruction of
covariance under a common eigenspace paves the way for efficient and easily conceivable
neuroscientific explorations that lie on the principles of Riemannian Geometry. The
key concept here is to approximate each covariance matrix as a supersposition of
covariance atoms. Hence, each covariance matrix can be now represented solely by
its membership (i.e., the non-negative weights) to the covariance atoms. Therefore, the
number of atoms characterizes the dimension of the new, weight space. Although the
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Figure 7. 2D semantic geodesic map of the approximated covariance matrices on
the left and right respectively. On the right, the semantic map of the weight space is
depicted under the Euclidean distance. Since only two atoms were employed in this
indicative example, the weight space illustration depicts the obtained approximation
weights unaltered. Blue dots correspond to the attentive condition whereas orange to
the passive condition of a randomly selected participant.

process of uncovering suitable atoms is very important for neuroscientific explorations,
in the presented case the atoms are uncovered by exploiting the Riemannian k-Means
algorithm.

Figure 7 depicts the 2D semantic geodesic map of the approximated covariance
matrices alongside with the 2D semantic map of the weight space under the Euclidean
distance. As it can be seen, the 2D semantic geodesic map of the approximated
covariance matrices is a highly distorted version of the reconstructed one. This is due
to the fact that only two covariance atoms were used for the approximation. However,
the approximated covariance matrices exhibit clearer separability characteristics than
the reconstructed ones. Moreover, the inspection of the weight space allows us to infer
that trials belonging to the passive condition, mostly located close to the y-Axis, are
clearly characterized by their membership to the second atom. On the other hand,
attentive trials cover a more wide spectrum of membership over both of the atoms.
We should note, that in both conditions there are several trials (those abiding on the
axies) that can be characterized solely by their membership to one of the uncovered
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atoms. Despite that such interpretations are bound to the method that was employed
to uncover the atoms, they clearly demonstrate the implications of this approach on
neuroscientific explorations. In practical terms, using linear SVMs on the weight space
which is Euclidean and under a 10-fold cross validation scheme, we achieved an average
classification accuracy (over the six subjects) of 97% and 96% when the chessboard
appeared on the right and left side respectively. These results are on par with state-of-
the-art methodologies [34].

5. Discussion

In this work we presented a methodology that allows the reconstruction of spatial
covariance matrices under the assumption of a common eigenspace. The vast majority
of our effort is dedicated to showing that the introduced reconstruction process does not
tamper the structure of the original covariance manifold. Given its validity, our research
aims to brigde the gap between Riemannian Geometry and neuroscience. Indeed,
Riemannian Geometry has been proved to be an invaluable asset in EEG signal analysis
(e.g., [46]), however it requires rigorous mathematical procedures that may hinder its
wider adoption. Moreover, this problem becomes more acute given that classical pattern
recognition and machine learning schemes cannot be readily employed in Riemannian
schemes.

In many cases, EEG decoding algorithms are agnostic with respect to the
physiological processes that accompany the brain signals (e.g., their origin or the
information they may carry) [47, 48]. Here, we aim to offer a valuable insight
on the connection of the neural mechanisms that underpin the EEG signals in the
context of Riemannian geometry. Although AJD has been previously exploited in
this context (particularly for blind source separation [49, 50]), the pervasive and elusive
EEG variability among different individuals have remained, among others, insufficiently
explored. Towards this end, we established, that under the assumption of common
mixing matrix, one of the most typical transfer learning approaches has a strong
neurological basis, that of normalizing the energy of the source signals. Ultimately
we believe that our work may further foster neuroscientifically-aware brain decoding
algorithms.

In the presented work we show that when the AIRM is employed to deal with spatial
covariance matrices, one may reconstruct (exploiting the concept of AJD) these matrices
under a common eigenspace and equivalently work with the corresponding eigenvalues.
Such a reconstruction offers the advantage of vectorization, where the spatial covariance
matrices can be completely characterized by their diagonalized form and consequently be
treated as vectors. However, in order to maintain the original structure of the matrices
a reformulation of the AIRM and its induced geodesic distance should be employed for
vectors, as described in Section 2.1.

In addition to the simplifications that the presented methodology brings, it also
comes with a second advantage; that of computational efficiency. As a matter of
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fact inner products and distance calculations under the AIRM have a computational
complexity of O(E3). However, working with the equivalent diagonalized forms the
corresponding computational compexity reduces to O(E). This is a large improvement,
especially when dealing with dense EEG recordings or incorporating Riemannian
Geometry schemes in real-time applications. However, the reduction in computational
complexity (e.g., in terms of time cost) can be observed only during the testing phase
or when complicated manipulations are required (e.g., in Riemannian geometry-based
microstate analysis) subsequent to the diagonalization process. In cases where the
classification task is applied only on a few samples (compared to the training set), the
reduced testing time cannot compensate for the increased cost induced by AJD. Hence,
it becomes obvious that AJD, which is a computationally demanding operation, may
cancel out any computational gain achieved by the proposed reconstruction process. A
straightforward solution to this shortcoming, concerns the calculation of the common
eigenspace only on a small sample of data. This will allow the proposed approach
to generalize, at the cost of a less accurate mixing matrix estimation, effectively for
the entire dataset. Moreover, the AJD concept can be incorporated as a calibration
procedure, since it has to be performed only once, leading to computationally efficient
online applications.

The introduced methodology is based on physiologically plausible assumptions
that underpin the EEG recordings. Our major assumption concerns the existence of
a constant mixing matrix. Despite that this idea is supported by a wide variety of
literature, we experimentally show that a “physiologically ideal” unmixing matrix indeed
exists within each recording session. Since the scalp position is stable with respect
to the electrodes, it is sound to assume that there should exist a matrix which can
approximately and jointly diagonalize the indepedent physiological sources for all the
trials within each session.

One important aspect that has not been discussed particularly in the manuscript
concerns the dimensionality of the mixing matrix and its mathematical connections
with the employed Riemannian Geometry schemes. In a strict mathematical sense, the
AIRM-induced geodesic distance is invariant to congruence when the matrix is full-rank.
Therefore, equivalence between the sensor space and the source space can be achieved
when the number of sources and the number of electrodes are equal (i.e., the mixing
matrix is a non-singular square matrix). In practice however, Riemannian Geometry has
offered significant achievements in EEG signal processing and is still an evolving research
field. As discussed in [6], Riemannian Geometry in the EEG field is more robust when
the number of available sensors is sufficiently enough. This, still unexplored, aspect
may limit the implications of both Riemannian Geometry generally and the introduced
methodology particularly.

As mentioned earlier, bridging the gap between rigorous mathematical procedures
and computational neuroscience is among the most profound contributions of this work.
Hence, it was within our scope to show the implications of the introduced methodology.
To this end, we reformulated and re-introduced two approaches, namely SPD Matrix
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Quantization and Coding over SPD Atoms, in order to showcase the benefits that the
reconstruction of spatial covariance matrices under a common eigenspace brings. One
important aspect in these two approaches concerns the codebook and atom learning
respectively. In both cases we employed a naive algorithm, the Riemannian k-Means.
This of course may confine the reported results but it was beyond the scope of our
work to propose new algorithms for unsupervised learning. Our objective here was to
demonstrate the capabilities that open via the introduced reconstruction procedure. We
believe, that the presented work may pave the way for robust and efficient neuroscientic
explorations that abide to Riemannian Geometry.
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