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Abstract. Neuromarketing exploits neuroimaging techniques to study
consumers’ responses to various marketing aspects, with the goal of gain-
ing a more thorough understanding of the decision-making process. The
neuroimaging technology encountered the most in neuromarketing stud-
ies is Electroencephalography (EEG), mainly due to its non-invasiveness,
low cost and portability. Opposed to typical neuromarketing practices,
which rely on signal-power related features, we introduce an efficient de-
coding scheme that is based on the principles of Riemannian Geometry
and realized by means of a suitable deep learning (DL) architecture (i.e.,
SPDNet). We take advantage of a recently released, multi-subject, neu-
romarketing dataset to train SPDNet under the close-to-real-life scenario
of product selection from a supermarket leaflet and compare its perfor-
mance against standard tools in EEG-based neuromarketing. The sample
covariance is used as an estimator of the ‘quasi-instantaneous’, brain ac-
tivation pattern and derived from the multichannel signal recorded while
the subject is gazing at a given product. Pattern derivation is followed
by proper re-alignment to reduce covariate shift (inter-subject variabil-
ity) before SPDNet casts its binary decision (i.e., “Buy”-“NoBuy”). The
proposed decoder is characterized by sufficient generalizability to derive
valid predictions upon unseen brain signals. Overall, our experimental re-
sults provide clear evidence about the superiority of the DL-decoder rela-
tively to both conventional neuromarketing and alternative Riemannian
Geometry-based approaches, and further demonstrate how neuromar-
keting can benefit from recent advances in data-centric machine learning
and the availability of relevant experimental datasets.
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1 Introduction

Neuromarketing refers to the field of studying consumer behavior by taking ad-
vantage of neuroimaging techniques [25, 16]. The conceptualization of neuromar-
keting by researchers and practitioners is the aftereffect of their efforts to obtain
a more thorough understanding regarding the process of consumer decision-
making. Neuromarketing’s rapid advancement in the recent years is attributed
to the credence that traditional marketing practices, such as focus groups, ques-
tionnaires, interviews, and behavioral metrics, are insufficient in capturing the
wide variety of aspects involved in consumer behavior. Indeed, traditional prac-
tices are cost-effective, scalable, and easy to interpret, however, they lack in
terms of generalizability and predictive power. As a matter of fact, participants’
responses may be inaccurate, unreliable, biased, or influenced by others’ opinions
(particularly in the case of focus groups) [20].

Electroencephalography (EEG) is the most commonly used neuroimaging
method in neuromarketing studies due to its non-invasiveness, portability, cost
effectiveness, and high temporal resolution. Although EEG has lower spatial
resolution than other neuroimaging technologies, its aforementioned character-
istics compensate for this limitation. Neuromarketing is a passive form of Brain-
Computer Interface (BCI) that monitors the user’s cognitive states, such as
attention, mental workload, and memorization, rather than serving as an al-
ternative communication or control pathway, which is the case for active and
reactive BCIs (e.g. [13]).

Typically, EEG-based neuromarketing studies employ signal-power related
features of neuroscientific intelligibility in order to examine the consumers’ re-
sponses to marketing stimuli. Among those features, the most commonly antici-
pated indices are those of approach-withdrawal, mental workload, attention, and
memorization. In essence approach–withdrawal (AW) is an index that quantifies
the hemispheric asymmetry of α activity in the prefrontal cortex [26]. As AW is a
contralateral phenomenon, the increased left or right frontal activity usually in-
dicates the approach and withdrawal effect respectively. Mental workload, which
can be interpreted as the effort invested by consumers while making decisions, is
quantified by the strength of θ activation in the prefrontal/frontal areas [9]. In
a similar manner, the memorization process [26] is known to affect the decision
making process as the selection of familiar products is more probable. On the
contrary, the attention index is studied both at a single-subject level [1] and at a
population level [14], with the latter being widely known as inter-subject corre-
lation. Moreover, the emotional aspect is also considered pivotal in the decision
making process and consequently several neuromarketing studies have employed
emotional indices in this direction [22]. Finally, there are a series of studies that
employ fusion techniques to combine the aforementioned indices (e.g. [14, 23]).

Instead of employing naive signal-power features, recent developments in
EEG decoding are oriented towards more sophisticated approaches that encap-
sulate the functional interactions between distinct brain rhythms (i.e. cross-
frequency coupling) and the functional dependencies across the distributed cor-
tical networks (by means of various connectivity measures). Among the wide
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spectrum of functional connectivity estimators spatial covariance matrice (SCM)
stands out as the most computationally efficient, since it inherits the advantage
of parallel computation (all pairwise relations are recovered within one step) and
can be easily adapted for deriving evolving connectivity patterns. SCMs provide
a first glance at the underlying correlation networks while simultaneously in-
corporate signal power features (i.e., the signal energy levels at the individual
sensors are tabulated along the main diagonal of the SCM matrix). By exploiting
the fact that SCMs are symmetric and positive definite (SPD), principles of Rie-
mannian Geometry can be employed to study and decode EEG signals in their
SCM form. Although typical neuromarketing studies usually rely on statistical
tests in order to examine the possibility of predicting consumers’ responses from
EEG features, our recent study [12] demonstrates that Riemannian geometry
holds the potential of achieving state of the art results in the field.

In this study, we aim to advance our previous work [12] by combining the
strength of Riemannian Geometry with the increasingly-documented, high pre-
dictive power of SPDNet [15], a Riemannian geometry-based deep learning ar-
chitecture. Although SPDNet has been employed with success in the past for
several EEG decoding tasks (e.g., motor imagery [19], emotion recognition [27],
etc.), this is the first time that it is exploited in the context of neuromarketing.
The employment of SPDNet in our work is enabled by a large-scale dataset that
was recently made publicly available by our research group and contains multiple
trials of multichannel EEG signals from 42 participants, hence, constituting the
employment of deep learning approaches both feasible and fruitful.

As demonstrated in the Results sections, our approach is capable of pre-
dicting whether a participant would buy or not a particular product solely from
EEG activity. In particular, by adopting a Riemannian alignment procedure [29],
we manage to tackle this problem in a subject independent manner, which is in
direct contrast with the widely adopted strategy of deploying personalized classi-
fiers. The proposed decoder exhibits state of the art performance, that surpasses
both conventional Riemannian geometry approaches and typical neuromarketing
approaches. This in turn makes our approach more robust and appropriate for
practical applications with the potential of minimizing calibration times.

The remainder of this paper is organized as follows: Sect. 2 describes the
selected dataset and the corresponding preprocessing steps, Sect. 3 presents the
proposed methodology, Sect. 4 is dedicated to the obtained results, while Sect.
5 discusses the added value and limitations of this work and identifies potential
future extensions.

2 NeuMa Dataset and Preprocessing

The NeuMa dataset3 that includes the experimental data of 42 individuals
(23 males - 19 females, aged 31.5±8.84), while browsing a digital supermarket
brochure, was selected for the evaluation of the proposed decoding framework.

3 https://doi.org/10.6084/m9.figshare.22117124.v3
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Participants were engaged in a realistic shopping scenario, where they had to se-
lect (by pressing the left click) the products they intended to buy. In particular,
a series of 6 brochure pages were presented to the participants, each including
24 different products belonging to the same product category. Participants could
freely browse among the 6 provided brochure pages, with the selection of prod-
ucts being unrestricted both in terms of quantity and total cost. The process
resulted in having all products included in the brochure labeled as “Buy” or
“NoBuy” depending on whether the product was selected by the participant or
not. Prior to the recording process, subjects were thoroughly informed regard-
ing the experiment and provided their written informed consent (approved by
CERTH’s Ethical Committee, Ref. No. ETH.COM-68). A more detailed descrip-
tion of the experimental protocol alongside with the corresponding EEG data
can be found here [11].

Brain activity was recorded, via 21 dry sensors placed according to the 10-20
International System, namely Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T7/T3,
T8/T4, Pz, P3, P4, P7/T5, P8/T6, O1, O2, A1 and A2 via Wearable Sensing’s
DSI 244. The sampling frequency was 300Hz and the impedance for all electrodes
was set below 10KΩ prior to the experiment’s initiation.

Prior to the analysis, the recorded EEG signals were subjected to a two-stage
offline preprocessing. Firstly, raw EEG signals were bandpass filtered within
[0.5–45] Hz using a 3rd-order zero-phased Butterworth filter. Then, artifac-
tual activity was removed using in sequence Artifact Subspace Reconstruction
(ASR) [21] and FORCe [8].

Besides brain activity, ocular activity was also registered using Tobii Pro
Fusion eye tracker, with a sampling frequency of 120Hz and the eye movement
traces were used for the trial definition/segmentation process. More specifically, a
single trial is defined as the time a participant was observing a product, which is
equivalent to the time the participant’s gaze was located within the boundaries of
each product image. Single trials of duration less than one second were considered
insufficient to convey information about δ brain rhythm and were consequently
discarded [6].

3 Methodology

3.1 Riemannian Geometry Preliminaries

Let Xi ∈ RE×t, i = 1, . . . , n be a single trial EEG response, also referred
to as epoch, where E denotes the number of electrodes and t the number
of time samples. Each Xi is accompanied by a label yi ∈ {0, 1} that corre-
sponds to two distinct brain states (or performed tasks; in our case correspond-
ing to “Buy”-“NoBuy”). Moving from the time domain, each EEG epoch (as-
suming zero mean signals) can also be described by the corresponding SCM
Ci =

1
t−1XiX

⊤
i ∈ RE×E , where (·)⊤ denotes the transpose operator. By defini-

tion and under sufficiently large t to guarantee a full rank covariance matrix,

4 https://wearablesensing.com/dsi-24/
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spatial covariance matrices are symmetric positive definite (SPD) that lie on a
Riemannian manifold instead of a vector space (e.g. scalar multiplication does
not hold on the SPD manifold).

3.2 Riemannian Alignment

While SCMs can provide information rich representations regarding EEG re-
sponses, their relative placement over the Riemannian manifold may signifi-
cantly differ among subjects and even recording sessions of the same subject.
In detail, it is possible for a subject’s SCMs to be concentrated at a different
area over the same manifold. This problem, usually referred as the covariate
shift phenomenon, can significantly harness the performance of deep learning
architectures, like SPDNet. To alleviate this problem Zanini et al. [29] proposed
a Riemannian alignment process, that in essence re-alings all SCMs around the
same reference point. Consequently, the alignment process requires the identifi-
cation of a unique reference point in the Riemannian manifold, known as center
of mass (or geometric mean) for a given set of SCMs. This point is being iden-
tified by minimizing the sum of squared Affine Invariant Riemannian Metric
(AIRM)-induced distances [24] (which offers equivalence between the sensor and
the source space) as follows, with an iterative process (due to the lack of a closed
form solution) and is known as the Karcher/Fréchet mean [3]:

B̄ = argminP∈Sym+
S

n∑
i=1

δ2(Ci,P) (1)

where n denotes the number of SCMs, δ refers to the AIRM-induced Rieman-
nian distance and P being any given point residing on Riemannian manifold.

Finally, once the center of mass has been identified (Eq.1), each SCM can
now be re-alligned as follows:

CA
i = B̄−1/2CiB̄

−1/2 (2)

3.3 The SPDNet Architecture

As its name states, SPDNet is a deep learning architecture designed for pro-
cessing data that lie on SPD matrices [15]. The SPDNet architecture is based
on the idea of representing SPD matrices as points on a Riemannian manifold,
which is a space that can be locally treated as an Euclidean space but has a
nontrivial global structure. The key idea behind SPDNet is that the convolution
and pooling operations are performed on the Riemannian manifold rather than
in Euclidean space. This allows the architecture to take into account the intrin-
sic geometry of SPD matrices when processing them. In the following, the main
components of SPDNet are briefly described, while a more detailed description
can be found here [15]:

– BiMap Layer: A special type of layer that is designed to preserve the Rie-
mannian structure of SPD matrices while reducing their dimensionality.
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– ReEig Layer: A layer designed to improve performance by introducing a
non-linearity.

– LogEig Layer: A layer that maps the input SPD matrices onto an Euclidean
space.

– A fully connected layer that maps the output of the previous layer to the
desired output.

The BiMap layer transforms the input SPD matrices into new SPD matrices
by means of a bilinear mapping. In more detail, this layer applies a transforma-
tion matrixW to the input SPD matrix,C, using the bilinear mappingWCW⊤.
This mapping results in dimensionaly reduced SPD matrices. In order to ensure
that the resulting output will maintain the SPD property of the input matrix
while being dimensionaly reduced, W is required to be a row full-rank matrix. In
essence, the BiMap Layer can be considered as a special type of pooling layer in
the SPDnet architecture that uses bilinear pooling to preserve the Riemannian
structure of SPD matrices while reducing their dimensionality.

The ReEig layer applies diagonalization to SPD matrices by computing the
eigendecomposition of each matrix. However, instead of applying any other non-
linear function to the eigenvalues, the ReEig layer applies a ReLU (Rectified
Linear Unit) activation function to the eigenvalues. The ReLU function is a
commonly used activation function in deep learning that has been shown to
improve the performance of neural networks. It simply sets all negative values
to zero, while leaving positive values unchanged. In the context of SPD matri-
ces, applying the ReLU function to the eigenvalues has the effect of setting all
close-to-zero eigenvalues to a positive value. This has the advantage of enforc-
ing strong positive definiteness on the diagonalized matrices while introducing a
non-linearity in order to increase the networks performance.

The LogEig layer performs the logarithmic mapping of the input SPD data.
This mapping converts the SPD matrix to a tangent space vector (typically at
the Identity matrix) by applying the logarithm operation at the eigenvalues of
the SPD matrix. Such an operation can be thought of as a vector that describes
how the SPD matrix deviates from the identity matrix. Among the useful prop-
erties of the logarithmic mapping (e.g., distance preservation and invariance to
affine transformations), it is employed in the context of machine learning since it
essentially reduces the SPD manifold to a flat space where Euclidean operation
can be deployed.

The fully connected layer in SPDnet is a standard layer that is commonly
used in neural networks. However, unlike the fully connected layer in a standard
feedforward neural network, the fully connected layer in SPDnet operates on
the vectorized form of the input SPD matrices, rather than on the raw feature
vectors. In other words, the input to the fully connected layer in SPDnet is a
vectorized SPD matrix, which is obtained by flattening the matrix into a vector.
The fully connected layer then applies a matrix multiplication to this vector,
followed by a bias term and an activation function. The output of this layer is
a vector of activations that can be passed to the next layer in the network. The
fully connected layer in SPDnet is typically used as the final layer in the network,
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where it maps the low-dimensional SPD matrix representations obtained from
the previous layers to the desired output space. However, in our setting consider-
ing that we are dealing with a classification task, the final layer of the employed
architecture is a softmax layer. Finally, we note that the network was trained
using a stochastic gradient descent optimization algorithm on Stiefel manifolds,
as proposed in [15]

Fig. 1. The proposed decoding scheme (a), and the employed SPDNet architecture (b).

3.4 The Proposed Decoding Framework for Neuromarketing

The proposed decoder brings the Riemannian related notions and the deep learn-
ing architecture of SPDNet described in the previous subsections into the neu-
romarketing EEG setting. It aims to differentiate the consumers’ brain activity
between the state during which a product is selected and the opposite state.
Fig. 1 graphically illustrates the proposed decoding pipeline and the SPDNet
architecture in the upper and lower panel respectively. In some detail, all sin-
gle trials (i.e. trials from all subjects) are first bandpass filtered within 1-45 Hz,
aiming to capture the entire spectrum of brain states (e.g., approach/withdrawal
and memorization) that can affect the decision making process [16]. Then SCMs
are formulated and re-aligned within the Riemannian manifold as described in
subsections 3.1 and 3.2 respectively. Finally, SPDnet is employed to process
the corresponding re-aligned SPD representations for each instantiation of the
train/test split. It is important to note here, that while for the training data
the alignment process can be easily performed using Eq.(2), the process is not
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as straightforward regarding the test data, as SCMs arising from the test set
must be firstly placed within a pre-learned embedding using the “out of sample
extension” algorithm [2].

4 Results

The proposed decoder was trained on SCMs derived from Neuma dataset. Its
efficiency and efficacy is demonstrated under a dichotomic, “Buy”-“NoBuy”,
scenario. A 10-fold cross validation scheme was employed for its thorough eval-
uation. In this validation scheme, the dataset is being split into ten equal parts
and iteratively one part is being used for testing purposes. Additionally, aiming
to overcome the barriers imposed by the unbalanced nature of the dataset (i.e.
the number of trials labeled as “NoBuy” was higher than the ones labeled as
“Buy”) that would harness the performance of any classification scheme, both
classes were equally represented before the initiation of the cross validation, by
randomly sub-sampling the majority class [5]. This process was repeated 100
times and each time different trials of the “NoBuy” class were included in the
train/test split. This approach was followed in order to ensure that the obtained
results are neither coincidental nor attributed to the particular selection of the
“NoBuy” trials. Hence, the reported classification results correspond to the av-
erage of the aforementioned procedure, leading ultimately to a fair evaluation
scheme. Concerning the SPDNet hyperparameters we note that it is employed
with a batch size of 30 and a learning rate set to 0.01.

Fig. 2. (a) The convergence curve for the proposed decoding scheme and (b) the cor-
responding error/accuracy curve.
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Fig. 2 showcases the accuracy curve and convergence curve of the proposed
decoding scheme for an indicative instatiation of the 10-fold cross validation
scheme. It is evident that after a few training epochs the decoder’s performance
is stabilized between 70% and 75% and that it can converge well approximately
within the same number of epoches (i.e. the classification error becomes stable
only when the objective function is also stabilized). It is important to note here
that similar trends are also observed in the majority of the train/test instatia-
tions, therefore it is safe to assume that approximately 300 epochs would suffice
for the training process.

Fig. 3 presents the classification accuracy for the “Buy”-“NoBuy” scenario
for the proposed decoder and, in addition, for a classifier that incorporates
well-established neuromarketing EEG-based indices and two other popular Rie-
mannian Geometry classifiers [7, 18]. In the former case typical features, like
approach-withdrawal and attention, were fused and fed to a Support Vector Ma-
chine (SVM), with the approach being referred as EEG-Fusion [14]. In the latter
case, the R-kNN (Riemannian k-nearest neighbor: similarly to the classical kNN
examines the geodesic distances between SCMs) and the Tangent Space SVM
(that classifies SCMs in the Euclidean tangent space delineated by the barycenter
of all the SCMs) are used.

It is apparent, that the only approach that can be characterized as compet-
itive to the proposed decoding scheme is the Tangent Space SVM, that reaches
a mean accuracy of 67.72% compared to the 72.18% accuracy of the proposed
decoder, with the observed difference being statistically significant at a P-value
of 0.01. The rest of the approaches employed for comparisons are significantly
outperformed by the proposed decoding scheme and their performance cannot
be characterized as competitive, considering that both barely surpass the ran-
dom level. In detail, the EEG-Fusion approach yields an accuracy of 52.75%,
while the corresponding accuracy for the R-kNN is 51.96%.

5 Discussion

Riemannian Geometry receives continuously increasing attention within the sig-
nal processing and machine learning communities, as the provided framework
for processing SCMs alleviates a series of problems, like non-stationarity or sub-
ject/session variability, encountered in typical signal analytic pipelines. Within
the same context, the adaptation of the information-rich SCM descriptors and
consequently of Riemannian geometry concepts by the neuroscientific commu-
nity has led to the design of robust brain decoding schemes.

Despite the well documented potential of the Riemannian Geometry, its ap-
plication in neuromarketing-related data remains limited. This alongside with
the findings of our recent paper [12] that showcased the potential of Riemannian
geometry to achieve state of the art performance on neuromarketing data, fu-
eled the present study. In particular, we examined here the conceptual blending
of Riemmanian geometry with deep learning, as realized in SPDNet with the
scope of designing a robust decoding scheme that can detect the preferences of
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Fig. 3. Classification performance in the “Buy”-“NoBuy” scenario.

consumers. The proposed decoder was introduced in the binary setting of the
“Buy”-“NoBuy” scenario, with the former referring to products that were se-
lected (i.e. bought) and the latter to the ones that were dismissed. By exploiting
an information-rich multi-subject dataset (i.e. a total of 42 subjects), in con-
junction with Riemannian alignment process (see subsection 3.2), the feasibility
of reliable decoding was demonstrated for the SPDNet. The proposed decoder
outperformed standard classifiers operating within the Riemannian framework
and a classifier that operates on standard neuromarketing descriptors. More-
over, the added value of proposed decoder stems from the fact that it can be
characterized as global, considering that it operates on EEG data from several
subjects opposed to previous studies where personalized decoding schemes that
lack generalizability are explored (e.g. [9, 12]).

At this point, it is important to note that only one dataset was selected for
the validation of the proposed decoder. This decision was imposed by the scarcity
of publicly available neuromarketing datasets, as to the best of our knowledge,
besides the selected dataset there are only two extra datasets that can be freely
accessed [14, 28]. However, both datasets, include a limited amount of trials
that constitute the use of SPDNet impractical without employing proper data
augmentation procedures (e.g. [17]). Therefore, the generation of artificial data
and its incorporation in the proposed decoding pipeline could be considered as
potential future extensions of this study.

Another potential future extension of this work could be the reduction of the
SCMs’ size, by identifying and selecting the most informative subset of sensors
(e.g. [10, 18]) or by combining sensors’ information via approaches like spatial
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filters [4]. This could not only lead to improved performance but also to fastest
computations, and consequently decreased computational cost. In the same di-
rection, frequency ranges that may carry more descriminative information re-
garding the SCM formulation can be explored. Finally, exploring the potential
of the proposed decoder in a multi-class scenario would be also particularly inter-
esting. The modification steps required to do so seem feasible, as the generated
SCMs (for all classes) will reside in a common Riemannian manifold and SPDNet
is capable of handling efficiently data arising from multiple classes.
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