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Abstract. Recently, imagined speech has become a subject of study due
to its potential as an intuitive communication system. It involves register-
ing neural responses generated by mental speaking without moving the
articulators. Although it may not perform as well as other paradigms, it
has multiclass scalability, making it suitable for building extensible BCI
systems. Hence, our study revolves around this intuitive paradigm that
decodes human speech imagery from EEG signals using Riemannian ge-
ometry and a recently introduced covariance estimation method that is
based on the concept of Approximate Joint Diagonalization (AJD). The
employed methodological framework approach sets its grounds on neu-
roscientifically sound theories and is being validated on a competition
dataset consisting of multichannel EEG trials from five different imag-
ined prompts. Despite its simplicity, the presented methodology achieves
over 70% accuracy in some classes, which is on par with State-of-the-
Art performance on the dataset. Our methodology performs significantly
better in monosyllabic prompts (i.e., ’yes’ and ’stop’) which may consti-
tute it more appropriate in immediate-response critical BCI applications.
Moreover, the conducted preliminary analysis that was used for sensor
selection and onset detection sheds light into the understudied neural
phenomena of imagined speech as captured in EEG signals.
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1 Introduction

We, as human beings, keep talking within us most of the time. We rehearse over
and over again how to manage a particular difficult situation, what to say to a
prospective customer, how to answer certain critical questions in an interview,
and so on. This speech, unlike the overt speech in a conversation with another
person, is imagined and hence, there is no movement of the articulators. Thus,
imagined speech is defined as the internal process of the voluntary imagination
of speaking without actually moving any of the articulators.

Decoding and communicating human thought into the outside world, so as
called, ‘reading the mind’ (i.e. to interpret internally-generated speech) has been
a long-held ambition of Brain-Computer Interfaces (BCIs). Imagined speech has
recently been studied as an intuitive paradigm [12], with the goal of decoding
the neural responses generated via imagining pronunciation. This paradigm is
particularly suitable for building communication systems and restoring commu-
nication for individuals that have lost the ability to speak (e.g. Stroke patients)
as their ability to actively think or imagine speaking remains intact. While this
paradigm currently lacks in terms of performance compared to other paradigms,
it has multiclass scalability [8], thus showing the possibility of building extensible
BCI systems [17] characterized by higher degrees of freedom. In this direction,
imagined speech BCIs can be employed to mitigate the shortcomings of typical
BCI paradigms (e.g., motor imagery, SSVEP, ERPs), like the limited number of
distinct prompts/commands or the difficulty in training someone to use these
systems [1], since they allow users to convey their intentions in a natural manner.
Out of the neuroimaging methods currently available, Electroencephalography
(EEG), is the one encountered the most in imagined speech BCIs as it is the least
invasive and the most cost-effective. Although EEG may lack in terms of spatial
resolution, compared to other neuroimaging technologies, it can reliably capture
brain activity changes over shorter timescales (i.e. high temporal resolution).

Despite the recent efforts of the neuroscientific community [18], imagined
speech recognition has proven to be a difficult task to achieve within an ac-
ceptable range of classification accuracy [14]. Concerning the particular case of
EEG-based decoding schemes, a recent review study [20] uncovered that con-
ventional Machine Learning algorithms (e.g., random forests, LDA, SVMs, etc.)
are typically employed. Contemporarily, the aforementioned Machine Learning
approaches are combined either with statistical or wavelet-based features. It was
only until very recently that imagined speech decoding methods took advantage
of modern Machine Learning schemes such as Deep Learning (mostly CNN ar-
chitectures) [4, 7]. In the same direction, Riemannian geometry, which exhibits
impressive decoding capabilities in other BCI paradigms, like motor imagery [5],
neuromarketing [11] and P300 detection [19], has not been studied sufficiently
in imagined speech. This fact indicates that this particular paradigm is still in
its infancy and there is plenty of room for active research and improvement.

Hence, our study revolves around the intuitive paradigm of speech imagery
as captured in EEG signals and aims to explore the potential of Affine Invari-
ant Riemannian Metric (AIRM)-induced Riemannian geometry when combined
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with a more delicate covariance estimation. Despite some recent efforts [22, 2],
to the best of our knowledge this is the first study, in the context of imagined
speech, that takes advantage of the equivalence between the sensor and source
space as enabled by AIRM that is typically employed on Riemannian geom-
etry settings for EEG decoding tasks. The employed covariance estimation is
based on the Approximate Joint Diagonalization (AJD) of the spatial covari-
ance matrices, which in essence, finds a common unitary matrix that allows us
to approximately diagonalize all the spatial covariance matrices (e.g. each co-
variance matrix corresponds to a different trial which took place in the same
recording session) simultaneously. Then, the obtained dominantly diagonal ma-
trices are used, by considering only their diagonal entries and discarding the
almost zero off-diagonal elements, to reconstruct the covariance matrices under
a common mixing model (expressed by the common unitary matrix uncovered
through AJD) [16]. Intuitively, this procedure serves as a denoising procedure on
the spatial covariance matrices and leads to more robust estimates of the spatial
covariance pattern.

The resulting covariance estimation is based on a preliminary analysis that
was conducted in an effort to determine the most appropriate sensors, frequency
ranges and time segments that the imagined speech phenomenon is taking place.
This preliminary analysis takes advantage of the continuous wavelet transform
and is performed in an unsupervised manner. By doing so, we were able to obtain
a neuroscientifically informed idea about the imagined speech phenomena that
remain understudied [24], as captured by means of EEG.

Our approach sets its ground on well-developed neuroscientific theories and
is validated on a competition dataset (2020 International BCI Competition;
Task 3 [14]) that contains multichannel EEG trials from five distinct imagined
prompts. The employed methodological framework is characterized by simplicity
(both in terms of the covariance estimation and the demployed machine learning
scheme which is based on k-nearest neighbours) while its performance exceeds
70% accuracy in some classes which is on par to State-of-the-Art (SotA) per-
formance on this particular dataset. As presented in the Results section the
employed methodology performs significantly better in monosyllabic prompts
(i.e., ’yes’ and ’stop’) which may constitute it more appropriate in immediate-
response critical BCI applications. Moreover, the conducted preliminary analysis
that was used for sensor selection and onset detection sheds light into the under-
lying phenomena of imagined speech. Overall, our approach ranks 2nd among the
published competition results [14], a fact that further demonstrates its efficiency
and neuroscientific validity.

2 Dataset

The original dataset (DOI: 10.17605/OSF.IO/PQ7VB) consists of 15 partici-
pants (S1-S15), aged between 20-30 years, who were instructed to silently imag-
ine pronouncing five different words/phrases (“hello,” “help me,” “stop,” “thank
you,” and “yes”) without moving their mouth or making any sound. The par-
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ticipants were seated comfortably in front of a 24-inch LCD monitor screen and
were asked to avoid any other mental activity except for the task at hand. The
imagination trials were conducted with a black screen to eliminate any external
stimuli. An auditory cue for one of the five words/phrases was randomly pre-
sented for 2 seconds, followed by a presentation of a cross mark lasting between
0.8-1.2 seconds. The participants were instructed to begin their imagined speech
immediately after the cross mark disappeared, and this cycle was repeated four
times for each cue. After the four cycles, there was a 3-second relaxation phase
to prepare for the next cue. Fig. 1 depicts the aforementioned experimental
procedure’s timeline.

Fig. 1. Timeline of the experimental procedure followed during the imagined speech
recording sessions. Image Source: [14]

A total of 400 trials per participant (80 trials per class) were recorded, out
of which 60 trials per class are provided for training and 10 trials per class for
validation purposes. The test data consist of 10 trials per class too. The train-
validation-test split is provided in a subject-specific manner and all trials are
belonging to a single recording session.

3 Methodology

3.1 Riemannian Geometry

Let us denote by Xi ∈ RE×T , i = 1, . . . , n a multichannel EEG trial, with E
denoting the number of electrodes, T the number of samples in time and n the
number of available trials. Each trial (assuming zero mean signals) can also be de-
scribed by the corresponding spatial covariance matrixCi =

1
T−1XiX

⊤
i ∈ RE×E .

Under a sufficiently large T value to guarantee a full rank covariance matrix, spa-
tial covariance matrices are Symmetric and Positive Definite (SPD) that lie on
a Riemannian manifold.

When dealing with EEG data, the manifold of SPD matrices denoted by
Sym+

E = {C ∈ RE×E : x⊤Cx > 0, for all non-zero x ∈ RE}, is typically studied
when it is endowed with the AIRM [23],

⟨A,B⟩P ≜ Trace(P−1AP−1B) (1)
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for P ∈ Sym+
E and A,B ∈ T+

E (P), where T+
E (P) denotes the tangent space of

Sym+
E at P. Then, the following geodesic distance is induced

δ(Ci,Cj) =
∥∥∥logm(C

−1/2
i CjC

−1/2
i )

∥∥∥
F
=

√√√√ E∑
q=1

log2λq (2)

with logm(·) denoting the matrix logarithm operator and λq the eigenvalues of

C
−1/2
i CjC

−1/2
i or similarly of the matrix C−1

i Cj . These two matrices hold the
same eigenvalues while the indices i and j can be permuted.

As its name states, δ is affine-invariant for non singular matrices W, i.e.
δ(WCiW

⊤,WCjW
⊤) = δ(Ci,Cj). This is an important property in EEG sig-

nal processing since it provides equivalence between the sensor and the source
space [6]. According to the prevailing EEG model, the recorded activity is well
approximated by a linear mixture of source signals. Hence, Xi = MSi with M
denoting the mixing matrix and Si the source signals. Then, by substituting the
observed signal with the equivalent mixing of sources, one may obtain the follow-
ing covariance matrix, Ci =

1
T−1MSiS

⊤
i M

⊤
i . Therefore, the mixing procedure

in the time domain results in a congruent transformation in the correspond-
ing covariance matrices. It becomes obvious that since δ is invariant to such
transformations, the two spaces can be equivalently treated under the AIRM.

3.2 AJD-based Covariance Estimation

The mixing matrix, denoted as M, is determined by the position and orientation
of dipoles in the brain, the physical characteristics of the head, and the placement
of electrodes on the scalp. It is therefore reasonable to assume that M remains
constant for a certain period, such as during a single recording session. Assuming
that sources are independent and the associated activity (i.e., source signals) are
uncorrelated, the spatial covariance matrices of the sources are diagonal.

The process of estimating the mixing matrix, denoted as M, from the ob-
served sensor signals is an ill-posed problem known as Blind Source Separation
(BSS) [21]. Two approaches are commonly used to tackle the BSS problem: The
first approach is Independent Component Analysis (ICA), which aims to trans-
form the data so that the components become as independent as possible [13].
An alternative approach involves using the diagonality of certain characteristic
matrices derived from the data to approximate M−1 through the concept of
AJD [26]. This involves finding an orthonormal change of basis denoted as U,
which makes the set of symmetric square matrices as diagonal as possible. This,
second approach, intuitively uncovers the ’average eigenspace’ of matrices that
are approximately jointly diagonalizable [3].

Following the notation of section 3.1, we denote by Ci covariance matrix that
corresponds to the EEG trial, Xi. Let U be the orthonormal matrix calculated
by AJD over the set of Ci with i = 1, . . . , n that estimates the mixing matrix
M. Then, each Ci can be transformed to a dominantly diagonal matrix through
U⊤CiU. As such, we can reconstruct (i.e., re-estimate) all the spatial covariance
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matrices under the constraint of a common eigenspace by using the formula
C̃i = Udiag(U⊤CiU)U⊤. Here, the diag(·) operator, which discards the non-
diagonal elements of a matrix and obtaining a strictly diagonal matrix, is applied
upon an almost diagonal matrix and hence achieves a good re-estimation of the
original covariance matrix.

This estimation approach forces all the spatial covariance matrices to admit
a common mixing matrix and, hence, acts as a denoising procedure that abides
to well-established neuroscientific theories. In addition, the estimated covariance
matrices are guaranteed to hold the SPD property which allows the employment
of Riemannian geometry. A more detailed description about the advantages and
the mathematical properties of this covariance estimation can be found in [16].

4 Results

4.1 Preliminary Study: Spectrotemporal Analysis and Sensor
Selection

Taking into account the high subject variability encountered in EEG data, a pre-
liminary analysis for each subject was performed that aimed to identify the exact
brain areas (i.e. sensors), timing (i.e. trial segments) and spectral components
(i.e. frequency ranges) that the phenomenon of imagined speech takes place,
with the scope of decoding the underlying phenomenon in the best possible way.
In this context, a wavelet filter bank approach that disentangles the input signal
into multiple frequency components without losing the signal’s temporal charac-
teristics is employed. It is noted that wavelets are characterized by time locality,
allowing an efficient capture of transient behavior in a signal, which is of essence
in the case of imagined speech decoding. Working on the training set for each
subject independently, we applied the continuous wavelet transform (FBCWT,
based on morse wavelet function and Matlab filter bank implementation) within
the [1-100]Hz frequency range and derive the associated scalogram for each trial
separately. Following the aforementioned procedure, all single-trial scalograms
were averaged, regardless their label, to derive a spectrotemporal profile of ac-
tivation for every sensor. Finally, using the baseline period, the mean and std
of each scale was estimated and used to derive a threshold value (mean+3std)
that in turn was employed to reveal the significant event-related spectral pertur-
bations. The process is completed with detection of the sensors, segments and
frequencies of interest based on the thresholding process.

Fig.2 illustrates the averaged FBCWT patterns for an indicative set of sen-
sors for an exemplar subject (i.e. subject S1), after the thresholding process is
completed. It is important to note here, that for clarity purposes only a selected
number of sensors is presented. The visual inspection of the figure provides an-
swers regarding the three research questions posed in this subsection. Starting
from identification of the brain areas that the imagined speech phenomenon
takes place, it is evident that the most informative sensors are located over the
Broca’s area (e.g., FT7, FT9 and T7), a trend that aligns well with what is
reported in relevant bibliography regarding the brain areas activated during the
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Fig. 2. Spectrotemporal analysis for the sensors characterized by the highest (left
panel) and lowest (right panel) activation levels. The stimulus onset is indicated by
the black vertical identified at t=0s and corresponds to cross disappearance as de-
picted in Fig. 1.

task of imagined speech [25]. On the contrary, the activation levels on sensors
located over areas that are not associated with the mental speech task, like the
middle area (e.g., sensors Pz, CPz and Fz), is significantly lower. Moving to the
temporal domain, it is obvious that a reaction period of approximately 500ms is
required before the mental imagery process is initiated by the participant, which
is typical, while varying among individuals, when cue-based triggers mark the
initiation of a task. Consequently, this process, upon appropriate modifications,
can be employed as an onset detection procedure, which is of paramount im-
portance in self-paced and online BCI paradigms. In the spectral domain, and
specifically for the sensors characterized by high activity (such as FT7, FT9 and
T7), three frequency ranges of interest can be identified: (i) Low ([5-20]Hz), (ii)
Medium ([40-55]Hz) and, (iii) High ([≥70]Hz), with the High frequency range
being empirically identified, based on the validation set, as the one with the
highest discriminative power. Finally, we should note that while the trends ob-
served for the subject S1 are similar for the other subjects, the exact optimal
sensors, segments and frequencies, as expected differ among them, showcasing
the necessity and importance of this preliminary study.
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4.2 Classification Results

Fig.3 presents the overall accuracy of the proposed decoder (Fig.3A, Fig.3B)
and also the accuracy scores obtained for each subject independently (Fig.3C).
In particular, the employed decoder is based on the estimation of covariance ma-
trix (as described in section 3.2) from EEG signals in the frequency range above
70Hz while employing a Riemannian k-NN classifier where distance is calculated
according to Eq. 2. By exploiting the validation set for each subject indepen-
dently, k = 3 was identified as the most suitable value in terms of accuracy. We
note that the provided test set is employed only for the purposes of obtaining
and reporting the classification performance in this section.

A B

C

Fig. 3. The global and subject-wise performance of the proposed decoder. (A) The
overall classification accuracy compartmentalized for each imagined prompt, (B) The
total confusion matrix, and (C) The average classification accuracy per subject.

It is evident that despite the high subject variability, the majority of the
subjects perform well when the imagined prompt is monosyllabic (see Fig.3A).
This trend may imply that a different approach focusing on syllables rather
than words may be required to better decipher the phenomenon of imagined



Title Suppressed Due to Excessive Length 9

speech. In the same direction, disentangling the two prompts starting with the
same syllable “He” (i.e. “Hello” and “Help me”) seems highly challenging, given
the high false positive values. Returning to the subject variability issue, while
the accuracy for the majority of the subjects revolve around 70%, there are
subjects with accuracy lower or barely exceeding 50% (i.e. S2, S10, S14), while
there are also cases characterized by near-optimal performance (e.g. S3, S5).
Considering the nature of the task (i.e. mental task) that in some cases may
not be completely straightforward, it is not unlikely that some participants may
require a familiarization period prior to the engagement with such tasks, as in
the case of the motor imagery paradigm [9].

Despite the aforementioned, the proposed decoding scheme provides classifi-
cation scores that significantly exceed the random level for this five class problem
that comes at 20%. Finally, it must be noted that the achieved performance sur-
passes all but one the competitive approaches regarding the selected dataset [14].
Additionally, the employed AJD-based covariance estimator surpasses the clas-
sical covariance estimator, under the same classification setting, by 3.1% while
exhibiting the same trends in class-specific classification results.

5 Discussion and Conclusion

In this paper we proposed a Riemannian geometry-based approach that relies
on a delicate and neuroscientificaly valid estimation of the covariance matrix
combined with tools of Riemannian geometry (as a result of endowing the SPD
manifold with the AIRM). The obtained results demonstrate the effectivess on
the employed scheme while showing the potential of Riemmanian geometry in
the demanding task of EEG-based imagined speech decoding. As presented in
the Results section our approach achieves State-of-the-Art results that are well-
above the 20% random chance of the employed competition dataset and our
presented approach is only surpassed by one competitor. It is important to note
that while competition outcomes have been published [14], the corresponding
methodologies deployed for the purposes of competition are not available. Hence
the comparison presented in our work is confined to the classification perfor-
mance and cannot be extended to more qualitative characteristics since they
remain unknown.

In addition to the proposed decoding scheme our work presents a spectro-
temporal preliminary analysis that investigates the frequency scales, time seg-
ments and sensors for the imagined speech phenomenon. Our findings suggest
that the imagined speech takes place 500ms after the cue onset while the con-
sistency among the wavelet-based activations paves the way for self-paced BCIs
that fall under the imagined speech paradigm. Moreover, our preliminary anal-
ysis uncovered the involvement of three distinct frequency ranges in the speech
imagery task. Although only the higher one (70Hz ≤) is exploited in the pro-
posed decoding scheme, it becomes evident that all three could play a crucial role
and therefore their effect in the decoding process should be further investigated.
Moreover, our findings leave room for improvement by hinting that the combina-
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tion and fusion of multiple frequency ranges may lead to more robust imagined
speech decoders [9]. Ultimately, our preliminary analysis led to an unsupervised
sensor selection procedure by means of keeping the sensors that exhibit the most
powerful activations during the imagined speech task. Although the identified as
the most ’informative’ sensors are well-aligned with the existing literature, they
may lack in terms of discriminability. Therefore, more suitable sensors selection
approaches could be employed (e.g., [15, 10]) in an effort to achieve superior
classification performance.

In more broad terms, imagined speech as a BCI paradigm is still in its in-
fancy and several aspects should be explored thoroughly. As our study indicates
some imagined prompts (i.e., monosyllabic words) are characterized by higher
decoding robustness whereas close-to-echoing words seem to be conflated by the
employed decoding scheme. Although particular claims cannot be made consid-
ering the extent of our study, valuable insights with respect to the most informa-
tive brain areas, physiology of the anticipated cortical activations and the most
suitable prompts (e.g., words, phonemes or syllables) could be derived upon fur-
ther exploration. The aforementioned will constitute the basis for future work
towards conceptualizing novel decoding frameworks that will take advantage of
the neural processes underpinning the imagined speech paradigm.
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